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ABSTRACT 
 

In RAW 264.7 murine macrophages co-induced by LPS and IFN-γ, some bound 
tyrosine residues of purified nitric oxide synthase are nitrated in vivo. 
Aminoguanidine (3 mM) and S-methyl-iso-thiourea (0.1 mM), added before and 
concurrent to priming, protected from cytotoxicity while amount of nitration 
increased. 
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INTRODUCTION 
 
Among the isoforms of nitric oxide synthase (NOS) purified [1, 2] and cloned [3-5] around a 
decade ago from different cell types, murine macrophage type 2 NOS, characterized as 
induced after Stuehr and Marletta [6, 7] by endotoxins, cytokines or interferon-γ and a variety 
of products related to inflammation, have been found in almost two-thirds soluble and one-
third particulate fractions [8, 9]; these do not appear to be clearly differentiated in terms of co-
factors, selective modulatory behaviors, and sensitivity to inhibitors. Structural post-
translational modifications of the N-terminal sequence of the first 17 aminoacid residues, 
possibly by aminopeptidase activity or alternately spliced mRNA’s, were immunologically 
proved only in membrane-associated iNOS [10]; by contrast, serine (positions 13 and 16), 
and tyrosine (position 14) residues were not analysed, even though they may contribute to 
regulating mechanisms such as protein folding and polymerization, translocation and related 
activities through their phosphorylative and possible nitrative acylations. 
     Our first aim was to study unidentified post-translational covalent tyrosine modifications, 
which may be associated with the well-known NO-self inhibition effect [11-16], which may 
disrupt the balanced phosphorylation vs nitration of these residues. 
     We report our preliminary data on iNOS tyrosine nitration in vivo, which may be submitted 
to phospho- and nitro-proteomic and comprehensive metabonomic kinetic investigation. In the 
only related nitroproteomic work [17], iNOS escaped identification, possibly due to the 
inadequacy of current techniques. By contrast, as for same products of the 518 identified 
genes of the human kinome [18], the hypothesis of a balance, interference and turnover of 
(selective) tyrosine nitrations vs phosphorylations has never previously been examined. 
     Here we discuss our observations in the context of the available information and of a wider 
integrative, holistic, and cellular bio-patho-physio-pharmacological perspective. 
     These data have been presented and discussed at internal Department Meetings and 
have partially been communicated in a Faculty review [19]. 
 
 
MATERIAL AND METHODS 
 
RAW 264.7 cells from American Type Culture Collection (Rockville, MD) were grown in 10 cm 
diameter culture disks at 37°C in a humidified water incubator. Sterile filtered RPMI-1640 
medium (Mediatech, Inc. CELLGRO; 0.2 g/L L-arginine free base) was supplemented with 
10% fetal bovine serum (prewarmed for 30 min at 56°C) and 1% penicillin/streptomicin Sigma 
mix. 
 
Cell lysate preparation 
     Control and primed cells [by scaled addition of 0.5 µg/ml lipopolysaccharide endotoxin 
(LPS; from Escherichia coli strain 055:B5, Sigma) plus 2.5 ng/ml recombinant E. coli murine 
interferon-γ (IFN-γ; Calbiochem, 50 units/ml) from 0 to 16 h] were observed under the 
microscope at each time point to detect damage or death (by Trypan blue incorporation). The 
nitrite produced, diffused and accumulated in the medium was measured in triplicate in 50 µl 
samples of supernatant centrifuged at 4°C for 5 min at 1,000 rpm using Griess reagent [20, 
21]. Centrifuged 600 µl samples of cell suspension were resuspended in an equal volume of 
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sterilized Tris-HCl (TBS) or Dulbecco phosphate buffered saline (PBS) 1:10, pH 7.40 (0°C), 
rapidly washed two times by recentrifugation and resuspended in 50 mM hypotonic Tris, pH 
7.40, added with 2 mM dithiothreitol and protein inhibitors [1 mM phenylmethylsulfonyl 
fluoride, N-alpha-p-tosyl-L-lysine and N-tosyl-L-phenylalanine chloromethyl ketone HCl; 1 M 
leupeptin HCl, pepstatin A, trypsin inhibitor (type I-S from soybean), aprotinin and antipain; 2 
µM benzamidine; 1 µM aprotinin and antipapain, all from Sigma], sonicated carefully at 0°C 
by repeated short pulses until complete lysis, verified by observation, and finally recentrifuged 
at 0°C for 60 min at 110,000 x g using a standard table microfuge.  
     The precipitated lysates and supernatants were prepared at least three times and 
submitted to protein and enzyme activity measurements, immunoprecipitation and Western 
blotting as specified below. 
 
iNOS purification 
     The medium was changed every 48 h; cells were scraped, resuspended as above in 
sterile TBS or PBS medium (pH 7.40, 37°C), centrifuged at the same temperature for 5 min at 
1,000 rpm, and placed 1:3, 3:9, 9:27 in fresh medium. Then 270 ml of cell suspension was 
collected and added to 1.5 l of freshly prepared medium, counted (average 1.56 x 10-6 

cells/ml), repeatedly verified by observation of Trypan blue exclusion, and subdivided in three 
500 ml batches: a), b), and c). Batches b) and c) were added with 0.1 mM aminoguanidine 
(AG; hemisulfate salt, Sigma) and 3 mM S-methyl-iso-thiourea (SMITU; sulfate salt, 
Calbiochem), respectively. After 30 min the inducers LPS and IFN-γ were added to all three 
batches at same concentrations as detailed above, and incubation continued at 37°C under 
gentle shaking until 12 h. Cells (on ice) were then centrifuged at 0°C for 5 min at 1,000 rpm, 
suspended 1:10 in an equal volume of TBS or Dulbecco PBS, pH 7.40 (0°C), rapidly washed 
two times by recentrifugation, resuspended in 5 ml + 5 ml 50 mM hypotonic Tris, pH 7.40, 
added with 2 mM dithiothreitol and protein inhibitors, sonicated, and finally recentrifuged for 
60 min at 110,000 x g at 0°C. Pellets were used as membrane fraction (after adding 1 M KCl 
for 5 min at 0°C and reprecipitation), and the soluble preparations were immediately passed 
through a preswollen 2'-5'-bisphosphate coupled agarose resin (2',5'-ADP-Sepharose 
Pharmacia) affinity column, followed by gel filtration chromatography on a 6 or 12 Superose 
column. All procedures were carried out in the cold room of a Pharmacia FPLC instrument by 
adding substrates, reducing agents and co-factors as needed [2, 22-24]. Determinations were 
repeated three times, and eluted proteins concentrated using Centricon 100 (Amicon) filters. 
     Protein and enzyme activity measurements, immunoprecipitations and Western blotting 
procedures were immediately repeated in purified preparations. 
 
Assay of NOS activity 
     NOS activity was determined by the nitrite-nitrate method [20, 21] adapted from Stuehr et 
al [22] and by measuring the conversion of L-[3H]arginine to L-[3H]citrulline, as described by 
Bredt and Snyder [25], following standard laboratory procedures. 
 
Immunoprecipitation 
     Immunoprecipitation was quantitatively performed in the supernatants of the culture disk 
cell lysates centrifuged at 110,000 x g, and in purified, concentrated most specifically active 
fractions centrifuged at 110,000 x g. Controls using nonimmune rabbit serum vs primary 
polyclonal rabbit purified anti-iNOS, polyclonal rabbit anti-nitrotyrosine, and monoclonal 
mouse anti-phosphotyrosine antibodies were added with appropriate Protein A/G Plus 
Sepharose (Santa Cruz Biotech Inc) bead suspensions and incubated overnight in the cold 
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room under continuous smooth oscillation. Spinnings at 5,000 rpm were repeated after 
resuspension of the pellets and washing in cold TBS or PBS, respectively. The preparations 
were warmed for 30 min at 37°C, 15 min at 65°C or 5 min at 100°C, after addition of sodium 
dodecylsulfate (SDS), 4% 2-mercaptoethanol reducing loading buffer. They were fractionated 
being the 1st 150 V, room temperature electrophoresis extended up to 4.5 h to achieve 
separation of interfering heavy and light chains of denatured antibody traces. 
     Titrations of final iNOS protein and of nitro- and phosphotyrosines, using the appropriate 
anti-nitrotyrosine and anti-phosphotyrosine secondary antibodies, were repeated at least 
three times as detailed below. 
 
Immunoblotting and miscellaneous methods 
     SDS polyacrylamide gel electrophoresis (SDS-PAGE) was performed on 7.5, 10, or 12%, 
1.5 mm slab depth gels, pH 8.8, using 4% stacking gel, pH 6.80, in a double Bio-Rad mini-gel 
apparatus according to Laemmli [26]. Proteins were mixed with standard 4 x loading buffer 
(25 mM Tris-HCl, pH 6.80; 16% glycerol, 8% SDS, 0.4% bromophenol blue) containing (or 
not) 20% 2-mercaptoethanol, normally heated to 65°C for 15 min or boiled for 5 min, as 
specified. Molecular weight references were taken from Bio-Rad Kaleidoscope Prestained or 
Precision Protein Standards. The first electrophoresis run was 100-150 min, 100-150 V at 
room temperature; proteins were then transferred (second run) for 30 to 90 min, 100 V, on 
ice. Membranes were nitrocellulose (Protran Schleicher & Schuell # BA85) treated with 
Ponceau S and washed during the procedures, or methanol activated polyvinylidene 
difluoride (Bio-Rad, cat 162-0177). Gels were finally treated with Coomassie Blue, properly 
washed, and stored at 0°C. Blocking was for 1 h at room temperature with milk (boiled or not) 
and/or  5% bovine serum albumin (BSA; Sigma) in standard TBS or PBS, containing 0.1% 
Tween (TBS-T, or PBS-T). Primary anti-iNOS (rabbit, 1: 2.000) antibodies were produced in 
the lab and named fractions G7 or G8; anti-nitrotyrosine antibodies (1: 2.000) were mouse 
monoclonal (1: 500; Upstate Biotech or Zymed), and rabbit polyclonal (1: 2.000; Upstate 
Biotech). Anti-phosphotyrosine monoclonal mouse antibodies (1: 750; Calbiochem) were only 
used diluted in TBS-T, 5% BSA, after inhibition of cell protein phosphotyrosyl-phosphatase 
activity prior to lysis with 100 µM sodium orthovanadate for 30 min at 0°C, activated as 
recommended by Upstate Biotech. Incubations were performed overnight in the cold room. 
Secondary antibodies were used as appropriate, diluted up to 1: 15.000, in the cold room, 30 
min for BSA containing buffers, or 1 h. Controls and blanks were systematically repeated. 
Detection was by means of ECL or ECL+Plus Amersham Pharmacia Biotech; quantitations 
were made throughout using Kodak 1D Image Analysis Software. Stripping and reprobing of 
membranes were repeated as needed. 
     Protein content was determined according to Bradford [27] using the Bio-Rad assay 
solution and BSA as standard. 
 
 
RESULTS 
 
Cell preservation 
     While cells in batches b) and c) grew normally, growth in batch a) and in the corresponding 
plates progressively deteriorated, with a reduction in the number of viable cells to 75% and 
63% at 8 and 16 h, respectively. At 48 h, in a few samples from batch a), all cells were dead, 
whereas cell growth in batches b) and c) continued.  
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Kinetics of NOS induction 
     Table I reports the kinetics of NO produced and measured in the medium of cultured RAW 
cells, and the protein content and NOS activity quantitatively assayed in supernatants at 
different times of incubation after addition of LPS and IFN-γ. Increase of NO synthesis, 
diffused and accumulated as NO2

- (258% and 479% at 5 h and 8 h, respectively), and its 
inhibition (71% at 16 h) were confirmed (see [13]). Total protein, which increased especially 
between 3 h and 5 h, decreased between 8 h and 16 h of incubation. NOS activity increased 
47.8 and 17 times, respectively, at the former time points, and decreased 1.4 times thereafter. 
Proteins and iNOS kinetics were titrated by Western immunoblotting both in the supernatant 
and in the membrane fractions. Nitrotyrosine and phosphotyrosine were not detected in the 
unprimed samples, but their presence, which appeared at 8 h and 16 h of priming, showed no 
differences thereafter, calling for immunoprecipitation and enzyme purification procedures. 
 
Nitration of iNOS tyrosine residues 
     Figure 1 reports the data on bound nitrotyrosine found in a purified enzyme preparation 
incubated 8 h after the double activation described above. This observation was made many 
times in the last two years at different priming time points in different soluble and membrane 
preparations [19].  
     Nitration, confirmed at the molecular weight of dimeric iNOS (around 135 KDa), sometimes 
appeared as two or three major distinct bands, more bands resulting in the same range, and 
at lower weights (about 65-70 and 80 KDa), in the limits that have been reported for identified 
monomer(s) [5, 28]. It was never detected with separations by primary monoclonal antibodies, 
and, for the primary polyclonals, when blocking and following in TBS or PBS, 2-
mercaptoethanol present or not, warming 15 min at 65°C or 5 min at 100°C, except with 5% 
BSA (Sigma, or Interagen Bovimunar Cohn fraction V, pH 7.0). It has never been confirmed in 
the commonly used 5% milk solutions (boiled or not) [ie: 17], nor when the proteins were 
incubated with myeloperoxidase, flavins, tetrahydrobiopterin (BH4), and glucose plus NADPH 
before Western blotting. 
     With reference to a widely used experiment, nitration disappeared after overnight 
incubation in the cold room, or 30 min at 37°C) with 10 mM free 3-nitrotyrosine, pH 7.35, and 
under freshly prepared 1.0 M Na2S204 in 0.1 M PBS, pH 9.0 [29] (30 min, 0°C, under nitrogen; 
no reducing agents added) (data not shown). 
 
iNOS inhibitors 
     After initial assays in which AG and SMITU products were titrated around 50% inhibition of 
the purified preparations, the 3 incubations described above were worked out by exposing the 
500 ml cell batches 30 min before standard co-induction with 3 mM AG, and 0.1 mM SMITU. 
Orthovanadate (100 µM) was added for 30 min at 37°C (or not) to a parallel series of (not 
induced) controls and samples primed for 12 h, before protein inhibitors and immediate 
sonication at 0°C; all steps were performed on Tris-HCl, without adding phosphate buffers. It 
should be stressed that, during purification, both NOS inhibitors were thoroughly washed, so 
that in the 110.000 x g centrifuged lysate supernatant and in the eluted fractions with highest 
NOS activity products were diluted down to practically inactive concentrations. 
     Whereas after vanadate treatment and before sonication cells disruption was almost 
100%, after the 12.5 h incubation both AG and SMITU apparently protected cell viability, as 
mentioned above, and protein content and NOS activities were higher compared to those of 
control cells, activities being 3.3 and 4.4 times higher, respectively, for lysates, and up to 8.1 
and 13.5 fold in final fractions after the treatments with the inhibitors. 
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     As shown in Fig. 2, nitration was present in the control samples, and values increased 
after both AG and SMITU treatments. Notably, the titrations of NOS activities, normalized for 
unit protein of the respective controls, were higher in iNOS purified repeated preparations of 
the treated batches for both products. 
     Preparations and assays were repeated three times and the standard error never 
exceeded 10%. 
 
Phosphorylation of iNOS tyrosine residues 
     In the membranes of Fig. 2, reprobed after 30 min, 50°C stripping with phosphotyrosine 
secondary mouse monoclonal antibodies in filtered boiled milk – or BSA – 5% TBS-T, the 
anti-mouse Ig-horseradish peroxidase linked whole antibody (Amersham Life Sci, from sheep, 
1:10.000) yielded any positive finding. 
     Activated 100 µM orthovanadate, incubated 30 min before, present along lysis and 
remaining in the purification or immunoprecipitation steps, was then used; nevertheless, the 
product was reduced to almost 50% viability as assayed by Trypan Blue exclusion. The NO2

- 
produced and accumulated was increased by almost 25% over the highest value reached 
with the externally added cytokine-endotoxin mixture priming, and the same activity of the 
LPS + IFN-γ co-induction resulted much more elevated, while proteins decreased and SMITU 
inhibition almost irreversibly present after the actually adopted 8 h plate incubations. 
     Figure 3 shows some of the Westerns obtained with the immunoprecipitation protocol 
adopted for the supernatant and beads, washed two times and resuspended 1:5 in TBS 
buffer, with orthovanadate where it had been added. The basic separations were here 
performed using anti-iNOS primary antibodies, protein A/G plus agarose-enriched 
incubations, and confirmed with appropriate secondary antibodies. As expected, 
immunoabsorptions and bead precipitations performed with anti-nitrotyrosine or anti-
phosphotyrosine primary antibodies, being the enzyme protein characterized by the anti-iNOS 
secondary probe, gave qualitatively similar results (not shown). 
     The only general comment on these separations, more than the confirmed increase of 
nitrations, iNOS phosphorylation resulted possibly seen even in the absence of the 
phosphatase blocker, being its presence quantitatively evaluated with the treatment of the 
inhibitors. This topic warrants further studies on both clearance and accumulation of the 
specific/selective reactive tyrosine sites, nitrated or phosphorylated, and in similar or different 
kinome protein domains. 
 
 
DISCUSSION 
 
This short presentation of the original observations prompts some considerations on the 
experimental approaches reported previously (Rossini et al [30]), here restricted to some 
unresolved problems on the dynamics of in vivo protein tyrosine nitration. 
     With regard to general NOS activity, the BH4 co-factor couples L-arginine oxidation to 
NADPH consumption and its concentration may regulate the ratio of superoxide (O2

.-) to nitric 
oxide (.NO) generated, while flavins enhance superoxide synthesis from the oxygen domain 
[31, 32]. Different signaling pathways mediate opposite effects on endogenous vs exogenous 
NO [33] and its mieloperoxydase-derived inflammatory oxidants, including nitrite [34-37]. 
Peroxynitrite (ONOO-) from NO and O2

.- can mediate DNA strand breakage and deplete 
NADH, decreasing mitochondrial respiration through activation, also in macrophages [38], of 
poly-adenosine-diphosphate ribosyl synthetase - the futile repair cycle leading to the PARS 



Pharmacologyonline 2 : 1-23 (2005)                                                                    Rossini et al.                     

 8

suicide hypothesis. The association between mitochondrial dysfunction and severity and 
outcome of septic shock has recently been debated [39]: “demand management” in cells [40] 
and modulation of mito-respiration by endogenous NO show a revival [41-45], which can be 
confirmed by integrated genomic and proteomic/metabonomic analyses through a 
systematically perturbed metabolic modeling [46, 47]. NO and O2

.- might be generated 
independently, but released simultaneously in intra- and/or extracellular environments, where 
they could form ONOO- by a reaction which would occur away from mitochondria; in the mito-
compartments this could occur only if iso-superoxide-dismutase (SOD) activity were saturated 
or impaired [42]. In cultured ovine pulmonary arterial endothelial cells, the 4.5-fold increase in 
superoxide contributes to the inhibition of NOS activity, though not of gene expression [48]: 
non-transcriptional activation of eNOS has been documented, for example for estrogens, as 
have protective corticosteroid effects [49, 50]. Peroxynitrite from macrophage-derived NO has 
long been claimed to contribute to oxidative stress and cytoprotection [51], as shown through 
its decomposition catalysts [52]. It does not decompose to nitroxyl anion [53], which exerts 
redox-sensitive positive effects [54], and apparently it does not directly nitrate tyrosine 
residues [55-61], a reaction that is not always enhanced by carbon dioxide/bicarbonate [62, 
63]. 
     Nevertheless, activation of the L-arginine/NO pathway results in pronounced protein 
tyrosine nitration in primary peritoneal macrophages isolated from thioglicollate-treated mice 
via a mechanism that does not appear to involve ONOO-, as also demonstrated in vivo with 
LPS (0.5 µg/ml) and IFN-y (100 units/ml) -activated cells. Data obtained in vitro  were 
quantitatively similar to those reported by the same researchers for cultured RAW 264.7 
macrophages, activated with LPS (0.5 µg/ml) and IFN-y (50 units/ml), upon addition of 1 mM 
exogenous L-arginine to cell suspensions. A striking mismatch in the time course of iNOS 
induction, resembling protein-bound tyrosine nitration kinetics (determined after derivatization 
to N-acetyl 3-amino-tyrosine by HPLC with electrochemical detection, on cell lysates, after 
pronase digestion and removal of nitrite), vs the burst at much earlier times of O2

.- and H2O2 
productions has been definitely shown in both models, as well as in animals in vivo. In fact, 
release of NO, accompanied by the accumulation of nitrite in the cell cultures, was detected at 
7 h, as confirmed, and nitration occurred with a pronounced lag phase to 18 h, reaching a 
max at 24 h post-stimulation and slowly declining during the next 24 h, while O2

.- (and H2O2) 
maxima were reached at 2 h, declining to basal rates 4 h after stimulation [55-61]. For 
cytokine-activated macrophages these authors support the alternative mieloperoxydase or 
another yet unidentified heme-peroxidase tyrosine nitration, and for H2O2 the oxidation of 
nitrite to  NO2 radical, another potent nitrating species. Alternative nitrating pathways are not 
excluded, and they may be specifically active in the different cells and tissue patho-
physiological regulations of pharmacotoxicological interest. 
     Peroxynitrite-dependent nitrosylations and nitrations can be modified by cell/tissue 
nitratases and nonenzymatic factors [64-70] and may induce protein modifications in tyrosine 
phosphorylation and degradation [71-73]. Some factors determining the selectivity of protein 
tyrosine nitration have been described in some substrates [73-79]: redox  
compartmentalization and proteosomal dysfunction may be unambiguously significant also in 
the interplay between NO, reactive nitrogen oxide-oxygen species, and O3 [80-85]. Diversity 
of LPS-induced nitrotyrosine formation in endothelium-macrophage-rich organs [86], and 
constitutive and differential expressions of endothelial and inducible NOS mRNAs and 
proteins, also described in normal and pathological human tissues [87], take account of the 
species differences among macrophage NO productions, turnovers, and concentration- 
dependent protective or toxic effects [88, 89]. 
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     As regards (murine) macrophage inducible NO synthase, tyrosine residue 
phosphorylation, described since 1996, has been associated with increased activity [90]; 
nevertheless, potential post-translational regulation has not yet been discussed as balanced 
with unclarified  nitrosative N2O3 production capacity, which also appears dependent on 
induction signals [91, 92]. 
     In our culture medium L-arginine was never limiting, so the novel O2

.- and ONOO- 
generation pathway, which is controlled by cytosolic L-arginine depletion after the exclusion of 
the aminoacid in the medium [93], is apparently not effective. In fact, after blocking stimulation 
by cytokine O2

.- generation from NADPH oxidases, when and only L-arginine is depleted, the 
induced RAW 264.7 mouse macrophage cell line iNOS [by 24 h treatment with 2 µg/ml LPS + 
100 units/ml IFN-y (9)], produced both NO and O2

.-, which would rapidly dismutate either 
spontaneously or by the action of SOD, triggering the production of ONOO- [93-95]. Indeed, in 
the absence of L-arginine and the presence of NADPH and FAD, FMN and BH4 co-factors, 
NOS does not catalyze O2

.- [94], and the co-enzyme and co-factors induce and co-accelerate 
O2

.- dependent OH. radical generation, abolished by catalase, suggesting that H2O2 may be 
involved and that nonenzymatic dismutation of O2

.- may be one of the sources of H2O2 
formation in the reaction mixture, while NO scavenges the .OH radical, protecting the enzyme 
[96]. Thus, the often reported [11-16] feedback self-inhibition of iNOS may be due to the 
accumulating nitrite, seemingly coincident with verified bound tyrosine nitration. After the work 
of Mitchell et al on the endothelial form, by oxygen derived radicals [94], murine macrophage 
iNOS feedback inhibition, suggested to be irreversible [13], has been simultaneously 
described in vitro as well in vivo for different NO synthases, as mentioned above [11, 12, 14, 
16]. More recently, peroxynitrite added in vitro to murine lung epithelial cells showed inhibition 
of iNOS-induced expression by α-TNF, IL-I and IFN-γ (all 10 ng/ml), while unidentified 
tyrosine residues proved to be nitrated [97]. Anyway, the options [98, 99] remain open, 
supporting the still not fully established regulation of NOS isoforms, which should be identified 
in terms of selective residues covalently modified by phosphorylation acylation and 
nitrosation/nitrosilative (poly)nitration. 
 
The subject brings to mind our observation of 1975 on purified glycogen-synthase, where the 
mostly phosphorylated D form presented greater tetranitromethane in vitro tyrosine reactivity: 
the identified 3-nitrotyrosine residue resulted to be essential for catalysis, not contributing to 
allosteric G6P modulation [100]. Now, to quote an example related to the integrated system, 
the (cardio)protection through glycogen-synthase kinase-3-β inactivation [by 
phosphatydilinositol-3-kinase (P13Kinase) and Akt-kinase serine-9-phosphorylation], - 
eventually an expression of ischemic preconditioning [101] -, appears counteracted while 
phosphorylation of tyrosine-216 (by a distinct kinase) compounds the ischemic damage [102]. 
The inherently obvious conclusion is then reached that microscopic, selective residue-sites 
patterns in the locally proper redox, phosphate and eventually nitrosative and nitrating 
potentials environment, need to be fully described before any pharmacotoxicological native, 
integer, receptorial useful definition can be formulated by protein expression and post-
translational modification functionally associated [30, 103, 104]. 
 
In the present instance, a few more comments can finally be made in relation to the specific 
NOS type 2 inhibitors assayed, whose many therapeutic targets and potential pitfalls have 
been widely discussed [ie: 105]. 
     Aminoguanidine (AG), the bifunctional reagent containing the guanidino group of L-
arginine linked to hydralazine, had been found to be almost equipotent to NG-monomethyl-l-
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arginine as an inhibitor of the LPS 9 h induced RAW 264.7 isoform, and 10 to 100 times less 
potent than the constitutive endothelial and brain forms [106]; S-methyl-iso-thiourea (SMITU), 
one of the competitive inhibitor of LPS + IFN-γ mouse macrophage RAW 264.7-induced iNOS 
(2 to 30 times more potent)[107, 108], has recently been described to block NF-kB activation 
and tissue iNOS itself in adenosine A3 receptor of Langendorff-perfused mouse heart 
subjected to late preconditioning-induced ischemia/reperfusion [109]. In the same activated 
mouse macrophages, AG has been shown to reduce the expression of iNOS protein [110]; 
nevertheless, a similar S-substituted-iso-thiourea failed to influence transcription of iNOS 
mRNA, translocation of iNOS protein or degradation of translated iNOS protein [111].  
     Here, the documented two steps LPS triggering and associated, synergistic  potentiated 
priming by IFN-γ enhanced transcription of macrophage NOS mRNA, which requires ongoing 
protein synthesis [112-114], shown increased in the control observations, were not analyzed 
further following the verification of the increase of cytotoxicity, protected by the two inhibitors. 
After the stimulation by the prototypical highly acylated E coli LPS in murine macrophages, a 
signaling complex of clustered receptors is formed, including, among others, heat shock 
proteins 70 and 90, the chemokine receptor 4 and growth differentiation factor 5, and the Toll-
Like Receptor TLR4, with phosphorylation of the signal transducers and transcription 
activators STAT I α and β, TIRAP (Toll-Interleukin I Receptor domain containing Adaptor 
Protein) -dependent, whose induction kinetics have proved different from that of IFN-γ [115-
117]. The protection against TNF-α, LPS-induced lethal shock, requires functional iNOS [118, 
119], and, mediated by CO, heme-oxygenase-1 [120, 121]. In the LPS-treated rat 
polymorphonuclear leukocyte, AG significantly inhibited free radical generation [122]. In the 
present context, concurrent phosphorylation potential was not analyzed, nevertheless, the 
confirmed protection from cytotoxicity given by AG and SMITU products added before, and 
present during priming, appears valuable and interesting at the time iNOS activity - increased 
by the co-induction process -, found much higher after exposure to concentrations of the 
products that would produce almost 50% inhibition. Anyway, in this respect we are aware of 
the opposite hormetic multifunctional effects (see [123]) and of the biphasic trends that have 
been demonstrated to be relevant in S-nitrosylation in different experimental conditions (see 
[124, 125]). Equally interesting was the confirmed nitration in the purified control induced 
preparations, increased following treatment with the two different classes of inhibitors. This 
observation was beyond the scope of this study, that is to investigate the underlying 
molecular basis, whose mechanisms may nevertheless be connected with the differences of 
the referred specific/selective bound tyrosine nitrating pathways. 
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                                                                      Table I 
Kinetics of NO2

- produced in the medium [22] by RAW 264.7 cells, lysate protein content [27] 
and NOS activity [25], during  0.5 µg/ml LPS plus 2.5 ng/ml (50 units/ml) recombinant murine 
IFN-γ. 
 

Hours of incubation 
(after addition of  
LPS and IFN-γ) 

NO2
- 

(∆µM/min) 
Protein 
(µg/ml) 

NOS activity 
(% ∆ cpm/mg protein) 

0 0.00 1682.4 0.00 
3 0.33 642.0 0.05 
5 0.85 1427.3 2.44 
8 4.07 2597.5 41.41 

16 2.91 1720.0 29.94 
 
     All measurements made in triplicate; for all means standard deviations do not exceed 10%; P<0.05. 
(Exp. 11.21.00). 
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Fig. 1.  Examples of Western blots showing at the level of purified iNOS, immunoprecipitated with the 
fraction G7 of the rabbit anti-iNOS primary antibodies (lane 6; PBS-T, boiled milk 5%), the 
corresponding nitrotyrosine band, by rabbit polyclonal primary antibodies (lane 2; PBS-T, BSA 5%). 
Relevant bands around 135 KDa according to the standards (lanes 1 and 7; Bio-Rad Kaleidoiscope, cat 
n. 161-0324, prestained, cont 90485, 10.11.00). Incubation with 10 mM 3-nitrotyrosine (lane 3) makes 
the nitrated band disappear. The nitrotyrosine band cannot be seen if rabbit polyclonals diluted in 5% 
milk (lane 4; boiled,) and/or (lane 5) mouse monoclonals are used, in 5% BSA, or, in 5% milk, boiled 
or not (not shown) 
     iNOS titrated in all lanes on 15 µg protein purified from cultured murine macrophages, RAW 264.7 
line, using the Bio-Rad mini-apparatus. Acrylamide gel 10%; 1st  electrophoresis run, running buffer, 
100 V, 100 min, room t; 2nd electrophoresis run, transfer on nitrocellulose membrane, 100 V, 100 min, 
on ice. For each lane, 30 µl of the purified preparation + 14 µl 4 x loading buffer, without 2-
mercaptoethanol; warming 15 min at 65°C. 
     All other conditions as detailed in Material and Methods. (Exps. 10.30.00 and 10.24.01). 
 
 
Fig. 2.  iNOS purified by affinity chromatography (1st elution with NADH 0.5 mM; 2nd by NADPH 
and 8 mM NADP+; ionic exclusion to separate coenzymes) on the 110.000 x g supernatant of the 
cultured RAW 264.7 murine macrophages. Cells lysates after 12 h co-induction by 0.5 ηg/ml LPS + 2.5 
ng/ml IFN-γ. 
     Bio-Rad Kaleidoscope Prestained Standards at 212, 132 and 86 KDa (lane 4; from above). Lanes 1, 
5: protein contents 8 x all the others, 15 ηg purified proteins each; lanes 1, 2 and 3: iNOS protein 
identified by anti-iNOS fraction G8 rabbit polyclonals (PBS-T, 5% boiled milk); lanes 5, 6 and 7: same 
protein contents as 1, 2 and 3, titrated by anti-nitrotyrosine rabbit polyclonals (PBS-T, 5% BSA). 
     Lanes 1, 5: controls, induced; lanes 2, 6, and 3, 7: treatments with 3 mM AG, and 0.1 mM SMITU, 
respectively. 
     All other conditions as detailed in Material and Methods. (Exps. 11.14-20.01). 
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Fig. 3.  Examples of Western blots showing the separations by immunoabsorption obtained from RAW 
264.7 cultured murine macrophages after 8 h LPS and IFN-γ co-induction at the concentrations 
indicated above. 
     Left: supernatant of the immunoabsorbed, precipitated beads; right: agarose beads washed two times 
and resuspended 1:5 in TBS before the addition of the 4 x loading buffer, resulting in 4% 2-
mercaptoethanol, 2 min boiling before centrifugation and distribution to the blots. 
     Lanes 1, 5: induced controls; 2, 6: same controls added with 100 µM activated orthovanadate 30 
min before sonication; 3, 7: lysates from cells treated for 30 min with 100 µM SMITU before priming; 
4, 8: as for 3, 7, but 100 µM orthovanadate added as for lanes 2, 6. 
     Panel above: immunoabsorptions by primary rabbit anti-iNOS antibodies, fraction G8, and 
detections by same polyclonals (filtered, 5% boiled milk, TBS-T); middle panel: immunoabsorption as 
for the panel above, but using secondary rabbit polyclonal anti-nitrotyrosine antibodies for probing (5% 
BSA, TBS-T); panel below: immunoabsorption as for the first panel, but mouse monoclonal anti-
phosphotyrosine as probing secondary antibodies (5%BSA, TBS-T). 
     Protein standard KDalton reference: Bio-Rad Precision Prestained Standards, broad range cat 161-
0372, cont 90904, 12.6.01. 
     All other conditions as detailed in Material and Methods. (Exps. 12.6-15.01). 
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