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Summary 

 
Voltage dependent sodium channels represent an important target for 
different neurotoxins and there have been identified different binding 
sites according to these interactions. The so called site 3 toxins 
comprise a diverse group of peptides obtained from sea anemones and 
α-scorpions that bind to voltage gated sodium channels slowing down 
the inactivation process. These polypeptides vary considerably in their 
affinities for the sodium channels in different excitable cells. In this 
work we studied the pharmacological action of three toxins: BcIII 
(isolated from Bunodosoma caissarum), BgII and BgIII (isolated from 
Bunodosoma granulifera) on isolated cultured neurons of rat dorsal 
root ganglia. The biophysical effects and the potency of these 
polypeptides were compared and their effects were studied using whole 
cell patch clamp techniques. These compounds considerably prolonged 
the action potential and selectively slowed down the inactivation 
process of tetrodotoxin-sensitive (TTX-S) sodium current. The potency 
of these compounds according to the IC50 values was of: BcIII 2.7 ± 2 
µM, BgII 4.1 ± 1.2 µM and BgIII 11.9 ± 1.4 µM. These differences 
could be determined for the slight variations in the amino acid 
composition of these peptides and the contribution of specific amino 
acids in the binding to the sodium channel. 
Key words: sea anemone toxins, sodium channel toxins, inactivation 
process, Bunodosoma toxins. 

 
 
Sea anemones represent a rich source of a variety of biologically active peptides. In 
particular, from few species of Bunodosoma genus have been obtained different 
compounds that show: cytolytic activity1,2, effect on Na+ and K+ voltage activated 
ionic channels3,4,5,6,7,8,9 and others effects10,11,12.  
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The most studied toxins from Bunodosoma genus are polypeptides of about 5 kDa that 
act on the inactivation process on voltage gated sodium channels in different excitable 
cells. BcIII (Bunodosoma caissarum) was characterized in six different sodium 
channels (from Nav1.1 to Nav1.6)9. BgII and BgIII (Bunodosoma granulifera) were 
studied in rat dorsal root ganglion neurons (DRG)7 and in five different cloned sodium 
channels expressed in Xenopus laevis oocytes9. In these preparations they produced a 
slowing of the Na+ current inactivation with a different potency.  They seem to bind to 
the so-called receptor site 3 of the Na+ channel which is partially formed by amino acid 
residues located on IV/S3-S4 loop in cardiac or nervous alpha-subunit of the Na+ 
channel13,14.  
In this work we studied the pharmacological action of BcIII toxin in DRG and 
compare its effect and potency on the tetrodotoxin sensitive sodium currents (TTX-S) 
in relation with BgII and BgIII toxins using whole cell patch clamp techniques. 

 
Methods 

 
BcIII, BgII and BgIII were isolated and purified from the sea anemones Bunodosoma 
caissarum9 and Bunodosoma granulifera3,4 respectively. Aliquots of stock solution in 
deionized water were prepared and stored in a freezer (-20 º C). Prior to each 
experiment, they were dissolved in the perfusion solution.  
 
To study the effect of the three toxins on Na+ currents the whole cell patch clamp 
technique was used. For this purpose DRG neurons were isolated and cultured from 
Wistar rats (P5-9) of either sex according to the procedure described by Salceda et al7. 
 
Whole cell recording was carried out with an Axopatch-1D amplifier (Axon 
Instruments, Union City, CA). Command pulse generation and data sampling were 
controlled by the Pclamp 8.0 software (Axon Instruments) using a 16-bit data 
acquisition system (Digidata 1320A, Axon Instruments) Intracellular modified solution 
contained (in mM): 10 NaCl, 100 CsF, 30 CsCl, 10 tetraethylammonium chloride 
(TEA-Cl), 8 EGTA and 5 Hepes  at pH=7,3). Extracellular modified solution 
contained (in mM): 20 NaCl, 1 MgCl2, 1,8 CaCl2, 45 TEA-Cl, 70 choline chloride, 10 
4-aminopyridine and 5 Hepes  at pH=7,4.  A detailed description of methods and data 
analysis was shown by Salceda et al.7.  
 

Results 
 

Sensory neurons of dorsal root ganglion are known to express tetrodotoxin-resistant 
(TTX-R) Na+-channels and tetrodotoxin-sensitive (TTX-S) Na+-channels. For this 
reason the type of INa in the cell under study was determined before each experiment. 
There were selected for this study only those cells with < 10% TTX-R INa, as derived 
from the steady-state inactivation profile following the criterion used by Strachan et 
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al15. The effects of the toxins on the Na+-currents were studied by a single step voltage 
protocol in which from a holding potential of -100 mV a 40 ms test pulse to -20 mV 
was applied with an interpulse interval of 8 s. The inactivation time constant was 
calculated adjusting the inactivation time course of the TTX-S sodium currents with an 
exponential function over the following 10 ms after the peak current. The inactivation 
process of TTX-S Na+ was well fitted by a single exponential function. 
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Figure 1-Effect of toxins on TTX-S Na+ currents of rat DRG neurons. 
A-Typical experiment showing the effect of BcIII (10 µM) under voltage clamp condition. 
The records represent superimposed traces before and after toxin application. Notice 
that the toxin produced a marked slowing of the inactivation process. B-Temporal course 
of BcIII action on the τh. Bar indicates the time interval of toxin perfusion around the 
cell. C- Concentration-response curves of the effects of BcIII (n=24; squares), BgII (n=87; 
triangles) and BgIII (n= 22; circles).  Points represent the mean ± standard error of the 
mean. D-Comparison of IC50 values of the three toxins.                             
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         As it is shown in the Fig. 1A that illustrates a typical experiment, 10 µM BcIII slows 
down the inactivation process of TTX-S Na+-current rendering it incomplete. The 
inactivation time constant (τh) changed from 0,4 ms in control condition to 0,87 ms 
after toxin application (last trace). In this experiment, the toxin application produced 
an increase in the current peak amplitude. The maximum effect was reached within 1-2 
minutes depending on toxin concentration. This effect was reversible after repeated 
washing of the preparation. The temporal course of BcIII action on the τh is depicted in 
figure 1B. Note that the maximum effect in this experiment was reached in the first 
minute. A qualitatively similar action on the TTX-S Na+ current was observed for BgII 
and BgIII. These toxins had no effect on TTX-R Na+ current (data not shown). 
To construct the concentration-response curve the protocol described above was used. 
Data were fitted by a dose-response function as follows:  
y = A1+(A2-A1)/1+10 LogIC

50
-x)P, where A1 is the y value at the bottom plateau, A2 is the 

y value at the top plateau, log IC50 is the concentration at which the response is 
halfway between A1 and A2 and P is the Hill slope. Concentration response effects of 
these toxins on the TTX-S Na+ current inactivation time course is depicted in figure 
1C. IC50 rank order was the following: BcIII 2.7 ± 2 µM, BgII 4.1 ± 1.2 µM and BgIII 
11.9 ± 1.4 µM (1D).   

 
Discussion 

 
In this study we compare the electrophysiological action of three type I sea anemone 
toxins on the same preparation. It was shown that the inactivation time course of TTX-
S Na+ current was delayed and became incomplete with significant current flow at the 
end of the pulse by the action of these peptides. It seems that these toxins slow the 
conformational changes that are required for fast inactivation possibly by binding to 
the receptor site 3 on the extracellular surface of the Na+ channel. In all the cases the 
effects of the toxins on the inactivation process take place very fast (within 1-2 min.) 
and these changes were reversible after washing with normal solution. The 
reversibility of sea anemone toxins action upon vertebrate Na+ channels are reported 
by many authors whereas toxin effect on crustacean Na+ channels have been described 
irreversible16.  
 
Few characteristics in the mode of action of these compounds were also similar. As it 
was reported for BgII and BgIII7 these peptides produced a leftward shift of the 
steady–state inactivation curve of the TTX-S Na+ current and they did not affect the 
activation process. Similarly, the perfusion of BcIII significantly shifted to the left (t de 
Student, p< 0.05) the steady–state inactivation curve of the TTX-S Na+ current (the 
half maximal inactivation value [V1/2] were of -64 ± 0.79 mV and -72.6 ± 0.52 mV for 
control and toxin presence respectively, and the slope values were of -9.2 ± 0.66 mV in 
control and -10.6 ± 0.48 mV toxin presence).  
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Concerning to the effect on sodium conductance BcIII did not significantly affect (t de 
Student , p>0.05) the potential at which activation is 0.5 (V1/2 act were of 30,4±0.62 mV 
and -31.8 ± 0.9 mV for control and toxin action respectively) and the slope factor for 
this curve (7.7 ± 0.53 mV and 7.9 ± 0.77 mV under control condition and after toxin 
application respectively).  In addition a common characteristic for these compounds is 
that they did not affect TTX-R Na+ currents (data not shown). 
 
In spite of the above mentioned similarities of the toxins there are few differences 
concerning to the action. BgII and BgIII perfusion did not significant affect current 
density however, perfusion with BcIII significantly increased the current density at 40 
± 18 % at -20, -10. 0 and 10 mV, without changes in the reversal potential of the 
current, which indicate that toxin does not disturb the ionic selectivity of sodium 
channels. In addition the peak of TTX-S sodium current did not significantly changed 
in presence of BgII and BgIII whereas a significant increase was produced by BcIII 
action. Moreover there are slight differences in their potencies that could be related 
with the specific amino acid composition and their participation in the toxin-channel 
binding. The magnitude of the effect of each toxin on the inactivation process vary and 
the order of potency according the IC50 was BcIII> BgII >BgIII.  
 
The three studied toxins are structurally similar. BgII and BgIII differ in the presence 
of Asp at position 16 instead Asn in BgIII, and this only substitution may contribute to 
the less potency of this toxin. Concerning to BcIII, it shows a 91% identity in relation 
to BgII and differs in 4 amino acids. The presence of a basic amino acid (Lys) in 
position 47 could explain its higher affinity in comparison with the others Bunodosoma 
toxins. Our results show that the three toxins act on DRG-cells, and BcIII is the most 
potent in this model. Perhaps these differences in affinity could be determined for the 
slight variations in the amino acid composition of these peptides and the role of 
specific amino acid in the toxin-channel interaction. The differences in potency of 
these toxins in this model in comparison with previous results in others excitable cells 
reinforce the fact that the affinity of sea anemone toxins for the Na+ channel is highly 
dependent on the tissue or the species in study.  
 
In addition, the presence of highly homologous Na+ channel toxins in two sea anemone 
species of the genus Bunodosoma seem to indicate that these peptides are essential in 
paralyzing preys and be employed as a defense. Furthermore, the highly similar 
peptides suggest that particular amino acid residues in each molecule may be involved 
in the discrimination of particular Na+ channel subtypes by the toxins. 
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