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Summary 

The interaction of both male and female sex hormones with neurotransmitters has been 

widely investigated. In the present study different effect of scopolamine on learning and 

memory of male and female rats was investigate. Forty rats were divided into four groups: (1) 

Male, (2) Male-Scopolamine (Male-Sco), (3) Female and (4) Female-Scopolamine (Female-

Sco). On a training trial, the rats were placed in the light compartment and when entered 

completely into the dark compartment received an electric shock . The latency time to enter 

the dark compartment was recorded and defined as retention trial. The animals of Male-Sco 

and Female-Sco groups received scopolamine(2 mg/kg, ip) 30 min before each retention trial. 

The time latency to enter the dark compartment in both Male-Sco and Female-Sco groups 

was lower than male and female groups respectively (P<0.001).  The time latency in Female-

Sco group was higher than Male-Sco group (P<0.001).  These results suggest that deleterious 

effects of scopolamine on memory are gender dependent and therefore male or female 

hormones have probably an interaction with cholinergic system.      
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Introduction 

 

The sex dependent difference in anatomy and the functions of several regions of the brain 

have been widely reported(1). It has been well known that the brain of males is larger then of 

female with the same body size however, it seems that the volume of gray matter in women is 

greater than men (2, 3). The sex dependent difference in the hippocampus, and important part 

of the brain involved in cognition and memory, and therefore the difference in cognitive 

performance has also been reported (4-6). The presence of  high density of both male and 

female sex hormone receptors in brain regions such as the hippocampus may confirm the 

relationship between sex hormones and cognitive functions of the brain(7-11). Several 

neurotransmitter systems such as glutamatergic, srotonergic, adrenergic, dopaminergic and 

cholinergic are involved in cognition, memory and learning and also, the interaction of sex 

hormones with these neurotransmitters has been reported (12-19).The central cholinergic 

system is the most important neurotransmitter system which is involved in various aspects of 

cognition and memory (19-22). The cholinergic basis of memory dysfunction and cognitive 

decline in diseases such as Alzheimer's has also been well documented (23-27).  
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The interaction of estrogen with the central cholinergic system, the most important 

neurotransmitter system involved in cognitive functions has also been suggested. Estrogen 

has been reported to stimulate choline acetyltransferase expression and activity, the activity 

of acetylcholine esterase and potassium-stimulated acetylcholine release in rat hippocampus 

(28-30). The interaction of male gonadal hormones with cholinergic system has also been 

reported(31).  

Scopolamine, a muscarinic acetylcholine receptor antagonist, has been frequently used to 

produce learning and memory impairments which mimic several aspects of cognitive 

impairment due to aging and dementia (32-35). Regarding to the possible sex dependent 

difference  in cholinergic system with both male and female hormones(36), the aim of present 

study was to elucidate different effects of scopolamine on learning and memory of male and 

female rats using passive avoidance test. 

 

 

Material and methods 

 

Animals and groups 

 Forty, 8- weeks male female Wistar rats (200±10 g), were obtained from Razi vaccine and 

serum research institute of Mashhad. All rats were housed 4 per standard cage at room 

temperature (23± 1 °C) on a 12 h light/dark cycle with free access to water and food ad 

libitum. Rats were given one week to adapt with new environment before any procedure was 

initiated. Animal handling and all related procedures were approved by the Mashhad Medical 

University Committee on Animal Research. The animals were randomly divided to following 

groups: (1) Male, (2) Male-Scopolamine (Male-Sco), (3) Female and (4) Female-

Scopolamine (Female-Sco). 

 

Behavioral procedures  
The animals were handled for 1 week before starting the experiments. Passive avoidance 

learning test based on negative reinforcement was used to examine the long-term memory. 

The apparatus consisted of a light and a dark compartment with a grid floor adjoining each 

other through a small gate. The rats were accustomed to the behavioral apparatus for 5 min 

during 2 consecutive days before the training session. On the third day, the animals were 

placed in light compartment and the time latency to enter the dark compartment was recorded 

.On a training trial, the rats were placed in the light compartment facing away from the dark 

compartment. When the rats were entered completely into the dark compartment, they 

received an electric shock (1 mA, 2s duration). Then, the rats were returned to their home 

cage. 1, 3, 24 and 48 hours later, the rats were placed in the light compartment and the 

latency time to enter the dark compartment as well as, the times spent by the animals in dark 

and light compartments was recorded and defined as retention trial
. 
The animals of Male-Sco 

and Female-Sco groups received scopolamine(2 mg/kg, ip) 30 min before each retention trial. 

In Male and Female groups 1m/kg saline was injected instead of scopolamine. 

 

Statistical analysis 
 Data were expressed as mean ± SEM. The statistical analysis was done by one-way and 

repeated measures ANOVA, followed by post hoc comparisons test. The criterion for 

statistical significance was p < 0.05. 
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Results 

As shown in Figure 1, before receiving shock, there was no significant difference in time 

latency to enter the dark compartment between groups. Figure 2 shows that the time latency 

to enter the dark compartment in both Male - Sco and Female - Sco groups was lower than of 

Male and Female groups( P<0.001). 48 hr after receiving shock the time lentency to enter the 

dark compartment in Female group was higher than of Male group(P<0.01). In this retention 

trial, the time latency in Female-Sco group was also greater than Male –Sco group(P<0.001). 

The total time spent in dark compartment by the animals of both Male –Sco and Female Sco 

groups was significantly higher than Male and Female groups respectively (Figure 3, 

P<0.001). 48 hours after receiving shock the animals of Male -Sco group spent more times in 

dark compartment in comparison with Female-Sco group (P<0.001);   however, there was no 

significant difference between Male group compared to Female group (Figure 3). The total 

time spent in light compartment by the animals of Male-Sco and Female-Sco groups was 

lower than their controls (P<0.001) (Figure 4). There was no significant difference between 

Male group in comparison with Female group. 48 hours after shock the animals of Female-

Sco group spent more times in light compartment in comparison Male-Sco group (P<0.001) 

(Figure 4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Comparison of time latency to enter the dark compartment before (1A) and 3, 24 

and 48 hours after (1B) receiving shock1A) and af in groups: Male Male-Scopolamine (Male- 

Sco), Female and Female-  Scopolaimne (Female-Sco).   

Data were expressed as mean ± SEM.  
**
P<0.01 when Female group was compared with 

Male group, 
+++
P<0.001 when Female-Sco group was compared with Male-Sco group.    
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Figure 2.  Comparison of the total time spent in dark (2A) and light(2B) compartments, 3, 24 

and 48 hours after receiving shock, in experimental groups. 
++
P<0.001 when Female-Sco 

group was compared with Male-Sco group.   

 

Discussion 

Formation of memory is a complex process which needs the contribution of several neuronal 

pathways and neurotransmitters. It is well known that the cholinergic system plays an 

important role in learning and memory in humans and animals (19, 20, 37). Several of these 

neurotransmitters systems have been shown to have interactions with both male and female 

hormones (12, 17, 18). Sex dependent differences in learning and memory have also been 

reported. Numerous studies obtained from  animals and humans have demonstrated that 

males have better spatial abilities in comparison with  females(38). In other tasks, such as 

visual memory and object recognition and the non-spatial version of the water radial-arm 

maze females have better performances than males(39, 40). The differences between male 

and female rats in passive avoidance learning and memory has also been reported(41). In the 

present study 48 hours after receiving shock the time latency to enter dark compartment in 

female group was longer than male group. These results are  agree with the results of  

Kemble (42) who showed the superiority of females over males. However the results 

obtained from other studies showed no significant difference in passive avoidance learning 

and memory between male and female(43, 44).   

The negative effects (45, 46) or no effect (47-49) of estradiole on learning and memory have 

been widely reported. Regarding the present study it seems that the physiological levels of 

estradiole has positive effects on memory retrieval in passive avoidance test. The 

mechanism(s) by which estrogen regulates memory functions has been widely investigated. It 

has been reported that elevated levels of circulating estrogen in female rats result in increased 

spine and synaptic density and parallel increases in NMDA receptor binding in area CA1 of 

the hippocampus (50, 51). The increase in spine density is associated with increased 

sensitivity of CA1 pyramidal cells to NMDA-receptor mediated synaptic input (52), 

suggesting that the new spines and synapses induced by estrogen are enriched in NMDA-
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receptors (53). There are also evidences showing that ovariectomy decreases NMDA binding 

density in the hippocampal CA1 region and dentate gyrus and estradiol restored and 

increased NMDA binding density in the CA1 region(54). The NMDA receptor has been 

implicated in the induction of hippocampal long-term potentiation (LTP) and its highest 

density is in hippocampus which is associated with certain forms of learning (55). It has been 

reported that the passive avoidance learning and memory depends on normal function of the 

central cholinergic transmission. It seems that the muscarinic cholinergic synaptic elements 

located in the posteroventral region of hippocampus and the basal lateral part of the posterior 

amygdale has an important role in this kind of memory and learning (56, 57). In the present 

study sex dependent difference in memory impairment by scopolamine was investigated. The 

results showed that the latencies to enter the dark compartment in scopolamine - treated 

female rats were greater than male. The time spent in dark by the animals of female-

scopolamine group was also lower than male-scopolamine. It seems that the deleterious 

effects of scopolamine in female groups are moderate in comparison with male. There are 

strong evidences approving the effects of ovarian steroid hormones on learning and memory 

(58). The results of present study indicated that estrogen probably attenuates deleterious 

effects of scopolamine on memory retention; time latency to enter the dark compartment in 

scopolamine treated female animals was higher than male treated. Gibbs et al  also showed 

that estrogen replacement prevents scopolamine-induced impairment in passive avoidance 

acquisition (59). The presence of estrogen receptors on neurons of the basal forebrain region 

and hippocampus confirms the interaction of cholinergic system with estrogen in cognition 

and memory (60-62).  The results obtained from young female rats showed that estrogen 

reversed the memory impairment due to  disruption of the  cholinergic transmission however,   

it was not  effective in older female rats (63). Estrogen has been shown to influence 

cholinergic neurochemistry in the basal forebrain and hippocampus and it has been 

previously suggested that the ability of estrogen to alter NMDA receptor binding to CA1 is 

related to its ability to alter cholinergic system (64).  

Based on the results of present study it is suggested that the deleterious effects of 

scopolamine on learning and memory is different in male and female rats   
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