MARINE NATURAL PRODUCTS - AS A SOURCE OF CYTOTOXIC DRUGS

S.R. Pattan^{1*}, S.A. Nirmal², J.S. Pattan³, R.S. Dhikale² and V.A. Kothiwale⁴

¹Department of Pharmaceutical Chemistry, Pravara Rural College of Pharmacy, Prayaranagar, M.S., India.

²Department of Pharmacognosy, Pravara Rural College of Pharmacy, Pravaranagar, M.S., India.

³Department of Biotechnology, P.V.P. College of Arts, Commerce and Science, Loni, M.S., India.

⁴Department of Medicine, J.N. Medical College, KLE University, Belgaum, K.S., India.

*Corresponding author E-mail: shashipattan@yahoo.com

Summary

Approximately one third of today's best selling drugs are natural. Among that nearly 3 lakh described species of plants and animals are from marine sources. Marine natural products have their stronghold in many phytopharmacotherapy including the area of anti-cancer chemotherapy. This article summarizes cytotoxic marine compounds from various marine plants like Cephalotaxus fortunei, Scilla sibirica, Aconitum hemsleyanum var leueanthus, Murraya koenigii, Marine sponge Halichondria sp, Singaporean ascidian etc

Introduction

Approximately one third of today's best selling drugs are natural products. Among that most are from terrestrial origin. Oceans cover 70% of the earth's surface and possess nearly 3 lakh described species of plants and animals from marine sources. It is reported that the living organisms were appeared in the sea more than 3500 million years ago ^{1,2} and evolutionary development has equipped many marine organisms with the appropriate mechanism to survive in a hostile milieu in terms of extreme temperature, changes in salinity and pressure as well as overcoming the effect of mutation, bacteria and viral pathogens³. Marine organisms have developed exquisitely complex biological mechanisms showing cross phylum activity with terrestrial organisms⁴. It is no surprise therefore that marine natural products have their stronghold in the area of anti-cancer chemotherapy as indicated by the list of compounds currently under clinical investigation⁵. Marine organisms comprise approximately a half of the total biodiversity, thus offering a vast source to discover useful therapeutics.

Table 1. Cytotoxic active principles from marine sources.

Name of the plant	Extract/part	Active principles	Reference number
Cephalotaxus fortunei	Methanol extract of fruit portioned between ethyl acetate and 5% HCl	 Cephalocyclidine Cephalotaxine Wilsonine, Drupacine 11-hydroxy cephalotaxine Esters of harringtanine deoxy harringtanine, iso harringtanine 	6
Scilla sibirica	Bulbs extracted with 60% aq ethanol	 22 alkaloids isolated. homoDMDP 6-deoxy homoDMDP 2,5,imino-2,5,6-trideoxyD-gulo-heptitol 	7
Aconitum hemsleyanum var leueanthus	Roots percolated with 0.15% HCl	 Leueantine A Leueantine B Leueantine C Leueantine D ezochasmanine 	8
Murraya koenigii	Plant extracted with 95% ethanol. Extract partitioned between water and chloroform	Compound (1)- brown powder Compound (2)- brown gum i.e. two carbazole alkaloids. (1) Murrayanine (2) 8,8"-biskoenigine	9
Marine sponge Halichondria sp.	Extract with ethyl acetate-mathanol-water(5:5:1)	halichondramine	10
Unidentified Newzealand ascidian Anchorina colonis	Methanol/ DCM	• coproverdine	11
Marine sponge corticum	Extracted with methanol	 plakinamine G plakinamine H 4-α-hydroxydemethyl-plakinamine B tetrahydro plakinamine A 	12
Singaporean ascidian. May belong to one of three familiar	Methylene chloride: methanol(1:1)	kuanoniamine A,C,D,E,FSubarine	13

Pseudodistomidae; polycylinidae or polycitoridae			
Myriastra clavosa	Methanol extract	 4,6,8,10,12,16-heptamethoxy-17-methyltricosa-1,17-diene 4,6,8,10,12,16,18-octamethoxy-19-methyl pentacosa-1,19-diene 4,6,8,10,12,16,18,20-nanomethoxy-21-methyl heptacosa-1,22-diene 4,6,8,10,12,16,18,20,22-decamethoxy-23-methylnanocosa-1,2,3-diene 4,6,8,10,12,16,18,20,22,24-undecamethoxy-25-methyluntriacont-1,25-diene Clavosolides A,B 	14
Consolida orientalis	Methanol extract	 18-demethylpubescenine 14-demethyltuguaconitine Takaosamine Gigactonine Delcisine 	15
Leucetta chagosensis	Methylene chloride extract	-	16
Alkaloid from Tuniate cystodytes species	Methanol extract	Rigidin B,C,D	17

Figure 1. Cytotoxic active marine compounds.

8,8"-Biskoenigine

Plakinamine

$$H_2N$$

4 α -hydroxydemethyl plakinamine B

Kuanoniamine C

OH OMe

Cephalotoxine –N- Oxide

OH OMe

Leueantine B

4,6,8,10,12,14,16,18-Octamethoxy-19-methyl pentacosa-1,19-diene

Coproverdine

Subarine

Plakinamine H

Leuceantine A

Leueantine B

Rigidine B

Kuanoniamine A

4 α - hydroxydemethylplakinamine B

Leueantine C

Leueantine D

(4,6,8,10,12,14,16) heptamethoxy-17-methyltricosa-1,17,diene

pllakinamine G

Tetrahydroplakinamine A.

Conclusion

The marine ecosystem offers a huge potential in the naturally based drug discovery. This article shows that the marine ecosystem is not only productive to discover anticancer entities but it is also a tool to identify new cellular targets for therapeutic intervention. The steady increase in the number of scientific publications and patents on marine genetic resources observed that this area is of growing importance for both the scientific community and bioprospecting. So it appears that a better and more pragmatic approach is urgently needed in order to translate innovative discoveries into active clinical therapeutics. The greater part of earth surface is covered by seas and ocean which contains about 5 lack species of marine organisms, since the natural products chemist diverted their attention to exploit the vast researches of marine flora and animal world, numerous novel compounds have been isolated from these marine organisms during the second half of 20th century. Many of these compounds have shown pronounced biological activities. However the compounds which have failed to show the activities for which those were assayed cannot be recorded as not having other biological activities. Many of these compounds might show some other activities if studied extensively during the course of time. Although the impact of marine natural products is presently lesser on the pharmaceutical industry, it may come forward in a big way to provide a new lead compound for the development of potential therapeutically active compounds.¹⁸

References

- 1. Macdougall, J.D. A short history of Planet Earth; John Wiley Eds.: New York, 1996; 5.
- 2. Argulis, L., Schwartz, K. Five Kingdoms, an illustrated guide to the phyla of life on Earth; W.H. Freeman & Company: New York, 1982; 16-17.
 3. Jimeno J., Faircloth G., JM Fernández Sousa-Faro, Scheuer P. and Rinehart K., Review on New Marine Derived Anticancer Therapeutics A Journey from the Sea to Clinical Trials 25 February 2004.

Pharmacologyonline 2: 943-952 (2009) Newsletter

Newsletter Pattan *et al*.

- 4. Scotfield, V.I.; Schumpberger, J.M.; West, L.A.; Weissman, L. Protocordate allorecognition is controlled by aq MHC-like gene. Nature 1982; 295, 499-502.
- 5. Argulis, L., Schwartz, K. Five Kingdoms, an illustrated guide to the phyla of life on Earth; W.H. Freeman & Company: New York, 1982; 16-17.
- 6. Mamadou Bocar, Akina jossang and Barnard Bodo. New alkaloids from *Cephalotaxus fortune*. J. Nat. Prod. 2003; 66 (1): 152-154.
- 7. Toru Yamashita, Kayo Yasuda, Haruhisa Kizu, Yukihiko Kameda, Alison A. Watson, Robert J. Nash, George W. J. Fleet and Naoki Asano. New polyhydroxylated pyrrolidine, piperidine, pyrrolizidine alkaloids from *Scilia sibirica*, J. Nat. Prod. 2002; 65 (12): 1875-1881.
- 8. Ling-Yun Li, Qiano-Hong chen, Xiao-Li Zhou, Dong-Lin chen, Feng-Peng Wang and Chun-Tao che. New Norditerpenoid alkaloids from *Aconitum hemsleyanum* var. Leueanthus. J. Nat. Prod. 2003; 66 (2): 269-271.
- 9. Yun-Song Wang, Hong-Ping He, Yue-Mao Shen, Xin-Hong and Xiao-Jiang Hao. Two new carbazole alkaloids from *Murraya koenigii*. J. Nat. Prod. 2003; 66(3): 416-418.
- 10. Liat chill, Tesfamariam Yosief and Yoel Kashman. Halichondramine, a new tetracyclic Bipiperidine alkaloids from marine sponge Halichondria sp. J. Nat. Prod. 2002; 65(11):1738-1741.
- 11. Sydria Urban, John W. Blunt and Murray H. G. Munro. Co-proverdine, a novel cytotoxic marine alkaloid from NZ Ascidian. J. Nat. Prod. 2002; 65(9):1371-1373.
- 12. Nicola Barbone, Simona De Marino, Maria Lorizzi, Franco Zolla, Cecile Debitus, Giuseppe Esposito and Teresa Iuvone. Minor steroidal alkaloids from the Marine sponge Corticum. J. Nat. Prod. 2002; 65(8): 1206-1209.
- 13. Nilar Philip, J. Sidebottom, Brad K. Carte and Mark S. Butler. Three new pyridoacridine type alkaloids from Singaporean ascidian. J. Nat. Prod. 2002; 65(8): 1198-1200.
- 14. Rama Rao and D. John Faulkner. Isotactic polymethoxy dienes from Philippines sponge *Myriastra clavosa*. J. Nat. Prod. 2002; 65:1201-1203.
- 15. Judit Hohmann, Peter Forgo, Zsuzsanna Haidu, Erzsebet Varga and Imre Mathe. Norditerpenoid alkaloids from *Consolida orientalis* and complete H¹ and C¹³ NMR signal assignments of some Lycoctonine type alkaloids. J. Nat. Prod. 2002; 65(7):1069-1072.
- 16. Harald Gross, Stefan Kehraus, Gabriele M.Konig, Gert Woerheide and Anthon D. Wright. New and biologically active Imidazole alkaloids from two sponges of the Genus Leucetta. J. Nat. Prod. 2002; 65(8): 1190-1193.
 - 17. Masashi Tsuda, Kohei Nozawa, Kazutaka Shimbo and Junichi Kobayashi. Rigidins B-D, new pyrrolopyrinidine alkaloids from *Tunicate cystodytes*. J. Nat. Prod. 2003; 66(2): 292-294.
 - 18. Rangari, V.D. Pharmacognosy and Phytochemistry; Carrier Publications; 1st Edn, Vol II, 2003; 168-169.