Deore *et al.*

PROPERTIES AND PHARMACOLOGICAL APPLICATIONS OF SAPONINS

Deore S. L., Khadabadi S. S., K.P.Chittam, P. G. Bhujade, T. P. Wane, Y. R. Nagpurkar, P. D. Chanekar, R. G. Jain

Government College of Pharmacy, Kathora Naka, Amravati - 444604. (M.S.), INDIA. Email: khadabadi@yahoo.com, sharudeore_2@yahoo.com

Summary

Saponins are a diverse group of compounds widely distributed in the plant kingdom, which are characterized by their structure containing a triterpene or steroid aglycone and one or more sugar chains. They are believed to form the main constituents of many plant drugs and folk medicines, and are considered responsible for numerous pharmacological properties such as anticancer and anticholesterol activity. Hence it has led to the emergence of saponins as commercially significant compounds with expanding applications in food, cosmetics, and pharmaceutical sectors. This review provides an update on the sources, properties, and pharmacological applications of saponins.

KEYWORDS: Saponins, Triterpenes, Steroid, Sapogenins, Surfactants

Introduction

Saponins are glycosides containing one or more sugar chains (glycone part) on a triterpene or steroid aglycone skeleton hence classified into two groups steroidal and triterpenoidal saponins. Aglycone backbone of saponin is also called as a sapogenin. (Bruneton, 1995). Their structural diversity is reflected in their physicochemical and biological properties, which are exploited in a number of traditional and industrial applications. The nature of the aglycone and the functional groups on the aglycone backbone and number and nature of the sugars can vary greatly resulting in a very diverse group of compounds (Figure 1; Price et al., 1987; Hostettmann and Marston, 1995).

The presence of saponins has been reported in more than 100 families of plants, and in a few marine sources (Hostettmann and Marston, 1995). The saponin content of plant materials is affected by the plant species, genetic origin, and the part of the plant being examined, the environmental and agronomic factors associated with growth of the plant, and post-harvest treatments such as storage and processing (Fenwick et al., 1991). A single plant species may contain a complex mixture of saponins (e.g. soybean saponins, ginseng saponins (ginsenosides).

The name saponin is derived from the Latin word 'sapo', which means the plant that consists of frothing agent when diluted in aqueous solution (e.g. soapwort, soapberry, soapbark and soap root). These agents also cause heaemolysis of red blood cells and thus they are highly toxic when injected directly into the blood stream. However saponins are relatively harmless when taken orally and some are found in most of our vegetables, beans and herbs. Toxicity is minimized during ingestion by low absorption and by hydrolysis. The well known sources of saponins are presented in Table 1.

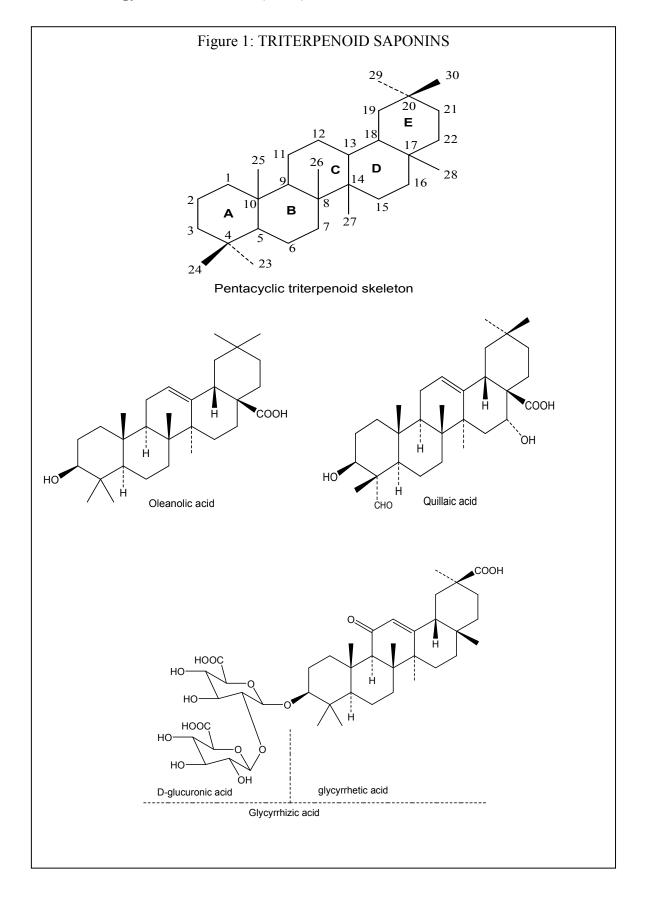

COMMON NAME	BIOLOGICAL SOURCE
Soybeans	Glycine max
Chickpeas	Cicer arietinum
Mungbeans	Phaseolus aureus
Peanuts	Arachis hypogaea L
Broad beans	Vicia faba
Kidney beans	Phaseolus vulgaris
Lentils	Lens culinaris
Leek	Allium ampeloprasum var. porrum (L.)
Garlic	Allium sativum
Asparagus	Asparagus officinalis
Spinach	Spinacia oleracea
Sugarbeet	Beta vulgaris L
Tea	Camellia sinensis
Yam	Dioscorea villosa and other Dioscorea species
Soap bark	Quillaja saponaria
Fenugreek	Trigonella foenum-graceum
Alfalfa	Medicago sativa
Chestnut horse	Aesculus hippocastanum
Licorice Glycyrrhiza	Glycyrrhiza glabra
Sarsaparilla	Smilax regelii
Soapwort Mojave	Saponaria officinalis
Yucca	Yucca schidiger
Gypsophila	Gypsophila paniculata
Ginseng	Panax genus

Table 1: Commonly used saponins containing plant sources

TRITERPENOID SAPONINS:

Triterpenoid saponins are rare in monocotyledons but abundant in many dicotyledons families (*Leguminosae, Araliaceae, and Caryophyllaceae*) (Sparg et al., 2004).

The pentacyclic triterpenoid skeleton exemplified by lupeol, α -amyrin and β -amyrin are usually found in triterpenoid saponin structures. Therapeutically important examples are mainly based on the β -amyrin subgroup mostly associated with carboxylic acid groups at positions C-23, C-28 and C-30 of aglycone moiety. Sometimes oxidized formyl (-CHO) or hydroxymethyl (-CH2OH) groups may also be present. Sugar residues are usually attached to the 3-hydroxyl, with one to six monosaccharide units (e.g. glucose, galactose, rhamnose, arabinose, with uronic acid units (glucouronic acid and galactouronic acid). Figure 1 is showing basic backbone structures as well as examples of various commercially important triterpenoidal saponins.

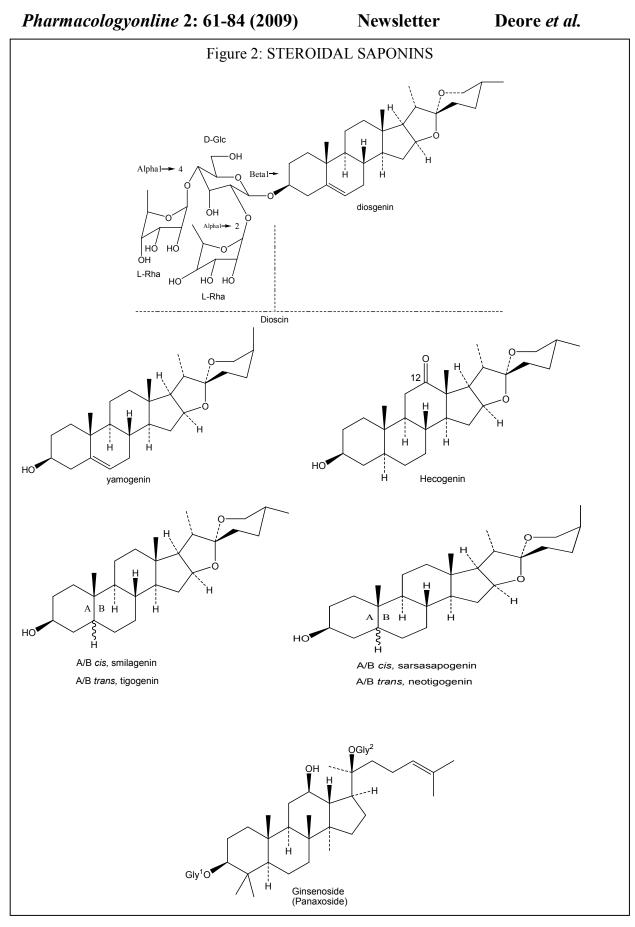
STEROIDAL SAPONINS:

The steroidal saponins have similar biological properties to the triterpenoid saponins but are less widely distributed in nature and are mainly found in monocotyledon families such as *Agavaceae, Dioscoreaceae* and *Liliaceae*, mainly the genera Allium, Asparagus, Lilium, Agave, Yucca and Dioscorea (Sparg et al., 2004).

Steroidal saponin are sterols in which the side chain of cholesterol has undergone some modification to produce further two different basic skeletons, one is C27 spirostane (largest group, six ring structure, eg. dioscin) and another one is C26 furostane (five ring structure). Incase of spirostanols, sugar chain is attached at C-3 and spirokatal arrangement is linked at C-22. Structural variations of spirostanols are due to changes in stereochemistry at positions C-5 and C-25. Furostanol glycoside has the spirostanol like skeleton but with open side chain and sugar chain is attached not only to position C-3 but often also to C-26.

They are also further categorized according to the number of sugar chains in their structure as mono, di-, or tridesmosidic. Monodesmosidic saponins have a single sugar chain, normally attached at C-3. Bidesmosidic saponins have two sugar chains, often with one attached through an ether linkage at C-3 and one attached through an ester linkage at C-28 (triterpene saponins) or an ether linkage at C-26 (furastanol saponins). The most common monosaccharides include: D-glucose (Glc), D-galactose (Gal), D-glucuronic acid (GlcA), D-galacturonic acid (GalA), L-rhamnose (Rha), L-arabinose (Ara), D-xylose (Xyl), and D-fucose (Fuc).

Figure 2 is showing basic backbone structures as well as examples of various commercially important steroidal saponins.


STEROIDAL ALKALOIDS

There is one more class which is a third group called steroidal amines and classified by others as steroidal alkaloids (Bruneton, 1995). These are actually nitrogen analogues of steroidal saponins and possess same properties such as surface activity and heamolytic activity but these compounds are highly toxic when injested (e.g. solasonine). Two important classes of these steroid alkaloids are the Solanum type and the Veratrum type.

Steroidal alkaloids also called as glycoalklaoides are most common in the families such as Solanaceae, Apocynaceae, and Liliaceae.Much of the recent work on this group of alkaloids was done by the group of Klaus Schreiber. Many of the plants that contain these alkaloids are of economic importance, e.g., *Solanum eleagnifolium, Solanum carolinense,* (horse nettle) , *Solanum tuberosum* (potato), *Lycopersicon esculentum,* (tomato) all belonging to family Solanaceae, *Veratrum viride* and other species belonging to family Liliaceae, *Holarrhena antidysenterica,* family Apocynaceae.

There are 5 major structural types of steroidal alkaloides. These are the spirosolanes (e.g. tomatidine and solasodine), solanidanes (e.g. verazine and etioline), 22, 26-epiminocholestanes (intermediates in the biosynthesis of spirosolane, solanidine, a-epiminocyclohemiacetal, and 3-aminospirostane alkaloids), a-epiminocyclohemiacetals, and 3-aminospirostanes (e.g. tigogenin) (R. H. Manske, 1981).

The harmful and toxic saponins always reffered as sapotoxins which is fourth group of saponins.

PROPERTIES

The structural complexity of saponins results in a number of physical, chemical, and biological properties, only a few of which are common to all members of this diverse group. Due to the presence of a lipid-soluble aglycone and watersoluble sugar chain(s) in their structure (amphiphilic nature), saponins are surface active compounds with detergent, wetting, emulsifying, and foaming properties (Wang et al., 2005; Sarnthein-Graf and La Mesa, 2004; Mitra and Dungan, 1997; Ibanoglu and Ibanoglu, 2000). Micellar solubilization by saponins can be exploited for the development of micellar extraction processes or to affect the solubilization of ingredients in cosmetic, pharmaceutical or food formulations (Shirakawa et al., 1986).

Solubility of saponins is also affected by the properties of the solvent (as affected by temperature, composition, and pH). While water, alcohols (methanol, ethanol) and aqueous alcohols are the most common extraction solvents for saponins, solubility of some saponins in ether, chloroform, benzene, ethyl acetate, or glacial acetic acid has also been reported (Hostettmann and Marston, 1995).

While bitterness is the most common sensory attribute associated with saponins (Price et al., 1985), the occurrence of sweet saponins is also well known (Kennelly et al., 1996). For example, the sweetness of licorice is attributed to its main saponin, glycyrrhizic acid (Figure 1), which is 50 times sweeter than sugar (Muller and Morris, 1966).

The complex structure of saponins may undergo chemical transformations during storage or processing which in turn may modify their properties/activity. The glycosidic bond (between the sugar chain and the aglycone), and the interglycosidic bonds between the sugar residues can undergo hydrolysis in the presence of acids/alkali, due to hydrothermolysis (heating in presence of water) or enzymatic/microbial activity resulting in the formation of aglycones, prosapogenins, sugar residues or monosaccharides depending on the hydrolysis method and conditions (Hostettmann and Marston, 1995). Complete acid hydrolysis yields the constituent aglycone and monosaccharides, whereas under basic hydrolysis conditions, cleavage of

The solubility behavior of the parent aglycone can be markedly different than the saponin due to its lipophilic nature.

EXTRACTION AND PURIFICATION OF SAPONINS

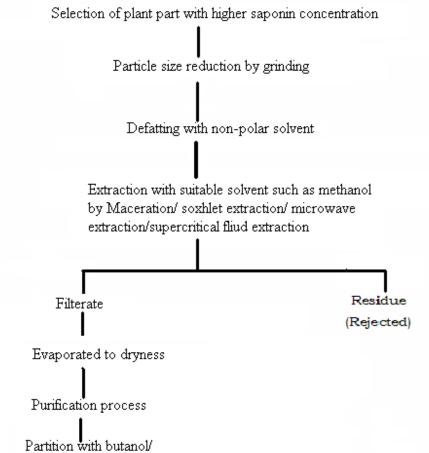

The recognition of the commercial significance of saponins have prompted research on process development for the production of saponins on a commercial-scale from natural sources to recover saponins as separate fractions which requires a sequence of purification steps. As we have discussed in solubility aspect of saponin that water, alcohols (methanol, ethanol) and aqueous alcohols are the most common extraction solvents for saponins, solubility of some saponins in ether, chloroform, benzene, ethyl acetate, or glacial acetic acid has also been reported (Hostettmann and Marston, 1995). Aglycon part of saponins called sapogenins (obtained after separation of glyconeaglycone acid hydrolysis) is generally soluble in non-polar solvents.

Figure 3 is explaining detail process for extraction as well as purification of saponins.

Pharmacologyonline 2: 61-84 (2009) Newsletter Deore *et al.*

Purification of the crude saponin extract usually requires a sequential approach. A First stepmfor the preliminary purification of saponins after the extraction involves the partitioning of saponins between aqueous extracts and a water immiscible solvent such as *n*-butanol (Kitagawa, 1986). After removal of the solvent, the saponins can be separated by precipitation (Kitagawa, 1986; Nozomi et al., 1986), adsorption (Giichi, 1987), ultrafiltration (Muir et al., 2002), open-column chromatography on silica by gradient solvent system CHCl3–MeOH–water (87:12:1–14:6:1), or by HPLC, flash chromatography, liquid chromatography (low, medium and high pressure), and countercurrent chromatography have been well established and widely used for analytical scale purification of saponins (Hostettmann and Marston, 1995).

Figure 3: Extraction and Purification of Saponins and Sapogenins

precipitation/adsorption/ultrafilteration/chromatography

CHROMATOGRAPHIC DETERMINATION OF SAPONINS:

Chromatography is a powerful technique for determination of saponins (W. A. Oleszek, 2002).

TLC on normal and reversed phase is mostly used technique for separation and determination of large number of saponins. Silica gel is a preferred stationary phase while mobile phase consists of chloroform-methanol-water or butanol-acetic acid –water for saponins and benzene-acetone for aglycones. Visualisation sprayers include Anisaldehyde-Sulfuric acid, Vanillin-Sulphuric acid, Libermann-Burchard reagent, Carrprice reagent and phosphotungstic acid. TLC separated spots can be analysed either by colorimetric or densitometric method. In case of colorimetric method separated spots are scraped, extracted with alcohol and treated with a specific reagent such as Ehrlich or vanillin reagent and measured at wavelength 515-560 nm. In densitometric analysis on line coupling of a computer with a dual-wavelength flying –spot scanner and two dimensional analytical software are used to determine saponin identification and quantification.

Gas chromatography is another method of choice. But as saponins are polar and quite large molecules which are very difficult to volatilised. Hence first step in GC analysis of saponins is carefully monitored hydrolysis of intact saponin moiety to their aglycone moiety. Next step is to prepare acetyl, methyl or trimethylsilyl deriviatives of this aglycone moiety to get analysed by GC.

The highly polar nature and high molecular mass of saponins, as well as their close structural similarities (isomers or epimers of the aglycone or sugar parts) can cause difficulties in TLC or CC, but the greater resolution of HPLC makes this the method of choice to deal with non-volatile highly polar intact saponin as well as aglycone. The separations are usually on normal (silica gel) and reversed phase (C8, C18) columns. C18 is most preferred but modified silica gel supports with NH2 or DIOL are occasionally used. The main problem with HPLC analysis is detection since only few saponins (e.g. glycyrrhrizetic acid) have absorption maxima in UV range. The separation of majority of saponins has to be traced at lower UV wavelength ranging from 200 to 210 nm which further limits the selection of solvents. Since acetonitrile gives much lower absorption at lower wavelength hence acetonitrile-water system is better choice. Pre column derivatisation of saponins to attach chromophore is alternative method to low wavelength and Refractive index detector.

A rapid and convenient procedure of paper chromatography for the separation and identification of steroid sapogenins and their acetates has been described by E. Heftmann and A. L. Hayden, 1951. The method is based on partition chromatography in petroleum ether-toluene-alcohol by on water mixtures and subsequent detection of the compounds on the filter paper by spraying with either trichloroacetic acid or blood.

BIOLOGICAL ACTIVITY

Saponins have been reported to possess a wide range of biological activities, which are Saponin-containing plants such as ginseng, yucca, horse chestnut, sarsaparilla, and licorice have been used in traditional medicine by various cultures for centuries for the prevention/ treatment of various ailments (Liu and Henkel, 2002; Hostettmann and Marston, 1995). Characterization of the medicinal plants and their extracts points to the role of saponins in conjuction with other bioactive components such as polyphenols in the observed health effects (Liu and Henkel, 2002; Alice et al., 1991). Table 2 is giving idea about diverse therapeutic effects of saponins.

Heamolytic activity		
Oda et al. (2000)	Escin saponins found in Aesculus hippocastanum L. (Hippocastanaceae) and jujuboside saponins from Zizyphus jujuba Mill. (Rhamnaceae)	Saponins with an acyl residue or oxide-ring moiety tended to show had strong haemolytic activity except for lablaboside d
Sindambiwe et al. (1998) Apers et al. (2001)	Maesa lanceolata Forssk. (Myrsinaceae)	Maesasaponins, substitution at position c-22 appears to be an essential structural feature for high haemolytic activity.
Voutquenne et al., (2003)	Pometia ridleyi (Sapindaceae).	Oleanolic saponin mixture showed higher haemolytic activity
Ahn et al. (1998)	<i>Bupleurum falcatum L.</i> (Apiaceae)	Saikosaponins-a, -d and -e were isolated and exhibited potent anti-cell adhesive activity and a strong haemolytic action.
Molluscicidal activity		
Sindambiwe et al., (1998) and Abdel-Gawad et al., (1999)	Maesa lanceolata	Six-oleanane-type triterpenoid maesasaponin mixture, with highly potent molluscicidal activity
Treyvaud et al., (2000)	<i>Phytolacca dodecandra</i> L'Hér and <i>Phytolacca icosandra</i> L. berries (Phytolaccaceae)	Monodesmosidic saponins of serjanic and spergulagenic acids with highly potent molluscicidal activity
Apers et al. (2001)	Leaves of Maesa lanceolata	Molluscicidal activity against biomphalaria glabrata snails.
Huang et al., (2003)	Sapindus mukorossi Gaertn. (Sapindaceae)	Triterpenoid hederagenin saponins had molluscicidal effects against the golden apple snail, pomacea canaliculata.

Table 2: Various biological activities of saponins

		Hederagenin saponins with three sugar moieties had higher molluscicidal activity than triterpene saponins with one sugar moiety.
Anti-inflammatory activity		
Just et al. (1998), Navarro et al., (2001)	Bupleurum fruticescens L. (Apiaceae),	Fruticesaponin b, a bidesmosidic saponin with an unbranched saccharide moiety shown highest anti- inflammatory activity of the all the saponins tested in the mouse oedema assays. Reducing the tpa-induced ear oedema
Sirtori, (2001)	<i>Aesculus hippocastanum L.</i> (Hippocastanaceae),	Aescin, a mixture of triterpenoid saponins has been shown to have anti- inflammatory, anti- oedematous and venotonic properties
Li et al. (2002)	Stem bark of <i>Kalopanax pictus</i> (Araliaceae).	Kalopanaxsaponin a and pictoside a were isolated triterpenoid saponin showed significant anti-inflammatory activity
Da Silva et al., (2002)	Agave attenuata Salm-Dyck (Agavaceae)	Steroidal saponin inhibited the increase in vascular permeability caused by acetic acid which is a typical model for the first stage inflammatory reaction.
Kwak et al., (2003)	Aerial parts of <i>Lonicera</i> <i>japonica</i> Thunb. (Caprifoliaceae)	Triterpenoid saponin loniceroside c showed anti- inflammatory activity when tested in vivo in the mouse ear oedema provoked by croton oil
Kim et al. (1998a)	Panax ginseng C.A. Mey., (Araliaceae)	Anti-inflammatory activity of these saponins is related to anticomplementary action through the classical inflammation pathway.
Antifungal activity Sindambiwe et al. (1998)	Maesa lanceolata	Mixture of maesasaponin inhibited the growth of epidermophyton floccosum, microides interdigitalis and trichophyton rubrum.

Ma et al., (1999).	Panax notoginseng (Burk.) (Araliaceae)	Inhibitory effect on aphanomyces cochlioides zoospore motility.
Li et al. (1999b)	<i>Colubrina retusa L.</i> (Rhamnaceae)	Jujubogenin saponins shown antifungal activity against candida albicans, crytococcus neoformans and aspergillus fumigatus.
Miyakoshi et al., (2000)	Yucca schidigera (Agavaceae)	Steroidal saponins shown to exhibit effective growth- inhibitory activities against food-deteriorating yeasts, film-forming yeasts, and dermatophytic yeasts and fungi
Mshvildadze et al., (2000)	Hedera colchica (Araliaceae)	Monodesmosidic saponins shown antifungal and antiprotozoal activity. Saponins with hederagenin as their aglycone were more active than those without.
Woldemichael and Wink, (2001)	<i>Chenopodium quinoa Willd.</i> (Chenopodiaceae)	Triterpenoid saponins have been reported to have antifungal activity. Only the crude saponin mixture inhibited the growth of candida albicans.
Iorizzi et al., (2002)	Seeds of <i>Capsicum annuum</i> (Solanaceae)	Furostanol saponins showed stronger antiyeast activity than antifungal activity
Quiroga et al., (2001) and Escalante et al., (2002)	Different species of the genus <i>Phytolacca</i> (Phytolaccaceae)	Three olean-type triterpenoid saponins isolated from the berries of phytolacca tetramera hauman (phytolaccaceae) were tested for antifungal activity
De Lucca et al., (2002)	Fruits of <i>Capsicum frutescens</i> <i>L.</i> (Solanaceae)	Cay-1, a steroidal saponin isolated was shown to be a potent fungicide and antiyeast properties
Antimicrobial activity		
ElSohly et al., (1999)	<i>Colubrina retusa L.</i> (Rhamnaceae),	A new jujubogenin saponin isolated had antimycobacterial activity against mycobacterium intracellulare
Iorizzi et al. (2002)	Seeds of <i>Capsicum annuum</i> (Solanaceae).	Furostanol saponins along with seven known saponins from showed weak or no growth inhibition against both gram-positive and gram- negative bacteria.

Antiprotozoal activity		
Traore et al., (2000)	Aerial parts of <i>Glinus</i> oppositifolius L. (Molluginaceae)	Two new triterpenoid saponins, glinoside a and b, isolated were shown to have antiprotozoal activity against plasmodium falciparum
Delmas et al., (2000)	Hedera helix L. (Araliaceae)	Three saponins isolated from α - and β -hederin and hedeacolchiside a1, were shown to have antileishmanial activity on all the stages of development of the parasite leishmania infantum.
Anticancer/ cytotoxic activity		
Itabashi et al., (1999)	Leaves of <i>Furcraea foetida</i> (L.) Haw. (Agavaceae)	A novel steroidal saponin, furcreastatin, was screened for its selective cytotoxicity towards mutant p53- expressing mouse fibroblasts
Mimaki et al., (1998b); Mimaki et al., (1998c); Mimaki et al., (1999a); Mimaki et al., (1999c) and Mimaki et al., (2001b); Yokosuka et al., (2002b).		Many isolated steroidal saponins have been shown to be either cytostatic or cytotoxic to hl-60 human leukemia cell lines
Mimaki et al. (1998b)	Ruscus aculeatus L. (Liliaceae).	Saponins ruscogenin diglycoside (spirostanol saponin) and its corresponding 26-glycosyloxyfurostanol saponin showed cytostatic activity
Mimaki et al. (1999c)	Aerial parts of <i>Dracaena</i> <i>draco L</i> . (Dracaenaceae)	Only two of the tested saponins showed relatively potent cytostatic activity against the human promyelocytic leukemia hl-60 cells.
Xiao et al., (1999)	Root bark of <i>Aralia</i> dasyphylla Miq. (Araliaceae)	A novel triterpene saponin, showed significant cytotoxic activity against kb and hela-s3 cells
Lee et al. (1999)	Panax ginseng (Araliaceae)	Novel saponin metabolite (ih- 901) which showed in vitro antitumor activity.
Yun (2003)	Panax ginseng (Araliaceae).	Activity of ginseng saponins are non-organ specific and that the anticarcinogenicity or human cancer preventative effect of panax ginseng is due

		to the ginsenoside saponins
		rg3, rg5 and rh2.
Mimaki et al. (1999a)	Roots of Pulsatilla chinensis	Triterpene saponins exhibited
	(Ranunculaceae)	moderate cytotoxic activity
De Tommasi et al.,(2000)	Aerial parts of Trevesia	Triterpenoid saponins
	palmata . (Araliaceae)	cytotoxic against three
		continuous culture cell lines
		(j774, hek-293 and wehi-164)
Gaidi et al., (2000b)	Roots of Acanthophyllum	Higher concentrations of two
	squarrosum (Caryophyllaceae)	new triterpenoid saponins
		were showed strong
		cytotoxicity in vitro for
		lymphocyte antiproliferation
Liu et al., (2000)	Panax ginseng	Saponins were shown to have
	(Araliaceae)	antiproliferative effects on
		human prostate cancer cell
		lines
Qiu et al. (2000)	Chlorophytum malayense	Saponin chloromaloside a
	Ridl. (Liliaceae),	which was found to be highly
		cytotoxic.
Zou et al., (2000)	Stem bark of Albizia	Julibroside j1 and julibroside
	julibrissin Durazz.	j9, two diastereomeric
	(Leguminosae),	saponins showed cytotoxic
		activity kb cancer cell lines
Fattorusso et al., (2000)	Allium porrum L. (Alliaceae)	Steroidal saponins were found
		to be cytotoxic to wehi 164
		cells and j774 cells
Yui et al., (2001)	Securidaca inappendiculata	Securioside a and securioside
	Hassk. (Polygalaceae) roots	b, cell death-inducing activity
Dong et al., (2001a) and Dong	Dioscorea panthaica Prain &	Steroidal saponins showed to
et al. (2001b)	Burkill (Dioscoreaceae)	be cytotoxic to a375-s2, 1929
		and hela cell lines.
Kuroda et al., (2001)	Camassia leichtlinii (Bak.)	Saponins have been shown to
	(Liliaceae)	have cytotoxic activity against
		human oral squamous cell
		carcinoma (hsc-2) cells and
		normal human gingival
		fibroblasts
Park et al., (2001)	Stem bark of Kalopanax	Hederagenin, -hederin,
	pictus	kalopanaxsaponin a
	(Araliaceae)	(commonly known as α-
		hederin), kalopanaxsaponin i,
		and sapindoside c has
		potential antitumor
		applications
Barthomeuf et al., (2002)	Hedera colchica (Araliaceae)	Hederacolchiside a1, a new
		oleanolic acid monodesmoside
		demonstrated strong
		cytotoxicity activities on a
		number of cancer cells

Gaidi at al. (2002)	Silene fortunei Vis.	Triterpene saponins were
Gaidi et al., (2002)	(Caryophyllaceae)	shown to increase the
	(Caryophynaceae)	
		accumulation and cytotoxic
		activity of the anticancer agent
		cisplatin on human colon
		tumor cells
Yokosuka et al., (2002b)	Rhizomes of Tacca chantrieri	Steroidal saponins were shown
	André (Taccaceae)	cytotoxic activity against hl-60
		human promyelocytic
		leukemia cells.
Jayatilake et al., (2003)	Seedpods Acacia victoriae	Avicins d and g, showed
	Benth. (Leguminosae),	potent cytotoxic activity
		against human t-cell leukemia
		(jurkat cells) in vitro.
Tezuka et al., (2000)	Fruits of Acacia concinna	Three new saponins,
	Wall. (Leguminosae),	kinmoonosides a, b and c
		exhibited significant
		cytotoxicity against human ht-
		1080 fibrosarcoma cells
Marquina et al. (2001)		Mixtures of monodesmoside
Warquina et al. (2001)		saponins have also been
		shown to be cytotoxic against
		p388 and colon cell lines.
		p388 and colon cen lines.
Antiviral activity	Fahaaaa famila	Tritom on aid any oning from the
Kinjo et al., (2000)	Fabaceae family	Triterpenoid saponins from the
		have been reported to have
4 1 (2001)		anti-herpes virus activity
Apers et al., (2001)	Leaves of Maesa lanceolata	Triterpenoid saponins no anti
	Forssk. (Myrsinaceae)	hiv activity
Gosse et al., (2002)	Fruits of <i>Tieghemella heckelii</i>	Arganine c, a saponin strongly
	(Sapotaceae)	inhibited the entry of hiv
Sindambiwe et al., (1998)	Maesa lanceolata Forssk.	The maesasaponin mixture
	(Myrsinaceae)	was reported to have both anti-
		herpes simplex virus type 1
		(hsv-1) and poliovirus type 1
		activity
Yang et al., (1999)	Seeds of Aesculus chinensis	Escin saponins were caused
-	Bunge (Hippocastanaceae)	hiv-1 protease inhibition
Adaptogenic activity		
Nocerino et al. (2000)	Panax quinquefolium L. and	Ginseng saponins the
	Panax ginseng	aphrodisiac and adaptogenic
	(Araliaceae)	properties
Kanzaki et al., 1998)	Panax ginseng	Wound healing
	(Araliaceae)	······································
Kim et al. (1998b)	Panax ginseng	Antidopaminergic action of
15111 et al. (19900)	(Araliaceae)	the saponins at the
	(manaceac)	postsynaptic dopamine
		receptor.
Les $at al (2000)$	Danan aina ana	Sananing ware also farmed to
Lee et al., (2000)	Panax ginseng	Saponins were also found to

	(Araliaceae)	have an effect on ethanol- induced amnesia
Yeilada and Takaishi, (1999)	Flowers of <i>Spartium junceum</i> <i>L</i> . (Leguminosae)	Oleanene-type saponin showed potent anti- ulcerogenic activity
Estrada et al., (2000)	Polygala senega L. (Polygalaceae)	Saponins had potential vaccine adjuvant activity, increasing specific immune responses in mice immunized with ovalbumin and hens immunized with rotavirus
Yoshikawa et al., (2003)	Roots and flower buds of Panax notoginseng (Burk.) (Araliaceae)	Triterpenoid saponins showed potent hepatoprotective effects on liver injury induced by - galactosamine and lipopolysaccharide
Parab and Mengi (2002)	Acorus calamus L. (Araceae)	Saponins tested for hyperlipidemic activity significantly decreased the serum cholesterol and triglyceride levels.
Manish Gautam et al (2004)	Asparagus racemosus (Willd.) (Liliaceae)	Potential immunoadjuvant that also offers direct therapeutic benefits
Mayank Thakur et al (2007)	C. borivilianum (Liliaceae)	Potent activity of ethanolic extract when compared to sapogenin fraction of C. borivilianum.
Hepatoprotective Activity		
Kinjo J. et.al (1998)	Roots of Pueraria lobata	All tested saponins showed hepatoprotective action
Hae-Ung Lee et.al (2005)	Panax ginseng	potent membrane stabilizing activity shoed by isolated saponin
Yoshikawa M. et.al (1997)	Roots of Bupleurum scorzonerifolium WILLD	Isolated saponins, bupleurosides III, VI, IX, and XIII, found to be exerting the hepatocytoprotective activity
Cardiovascular activity		
Hiromichi Matsuura (2001)	Allium cepa	Saponins account for the cholesterol-lowering effect of garlic
Glenda I Scott et.al (2001)	Panax ginseng	Demonstrated a direct depressant action of ginsenosides on cardiomyocyte contraction, which may be mediated in part through increased NO production.

Pharmacologyonline 2: 61-84 (2009)NewsletterDeore et al.

Sagesaka-Mitane Y, (1996)	Camellia sinensis var. sinensis	Single administration of tea- leaf saponin at 50mg/kg, p.o. showed a long-lasting hypotensive effect and this effect was as potent as that of enalapril maleate at the dose of 3 mg/kg, p.o.
Antiarthritic activity Da Wei Li et.al (2003)	Kalopanax pictus bark	The ethyl acetate fraction exhibited antiarthritic activity, which resulted in the isolation of α -hederin, α -hederin methyl ester, and kalopanaxsaponin I.

COMMERCIAL APPLICATIONS

The diverse physicochemical and biological properties of saponins have been successfully exploited in a number of commercial applications in food, cosmetics, agricultural and pharmaceutical sectors. However from a commercial angle the steroidal saponins have been occupied a very important position in the therapeutic armamentarium which is evidence by examples such as raw material for syhntesis of number of medicinally potent steroids (Vitamin D, sex hormones like testosterone, progesterone, ostradiol etc. cardiac glycosides (digoxin, digitoxin), corticosteroids (cortisone acetate, aldosterone), oral contraceptives (mestranol, norethisterone) and diuretic steroid (spirinolactone). The liquid soap of soap nut solution is effective and economical household cleaner and can be used for washing pet's fur and skin as this removes parasites leaving the pet clean, soft and protected from any further infestations. In India, it is used as a jewelry polish, by soaking jewelry into the liquid soap. Commercial saponins are mainly extracted from *Quillaja saponaria and Yucca schidigera*.

Conclusions

Saponins include a diverse group of compounds characterized by their structure containing a steroid or triterpenoid aglycone and one or more sugar chains. Their physicochemical and biological properties, few of which are common to all members of this diverse group, are increasingly being exploited in food, cosmetics and pharmaceutical sectors. Knowing the commercial potential due to their health benefits (especially anticancer and immunomodulator) requires new approach in discovering novel saponins with promising chemotherapeutic effects against dreadly diseases cancer and AIDS.

Deore et al.

Food applications:	
Miyakoshi, M., 2000.	Yucca (Mohave yucca, <i>Yucca schidigera</i> Roezl Fla) and quillaja (quillaia, soap bark, <i>Quillaja saponaria</i> Mol Fla) are classified as food additives in the US
European Union	Quillaja extract is classified by the European Union as a foaming agent for use in water-based, flavored non-alcoholic drinks
Godwithus Co Ltd., 2005.	Soybean concentrates marketed as functional food ingredients and nutraceuticals (OrganicTechnologies, 2005), and aKorean ginseng extract called saponia
Kang et al., 1999, Bhaggan et al., 2001.	Oleanolic acid include as a flavoring agent to modify the aftertaste/taste of the artificial sweetener and in fat blends as crystal modifier
Micich et al., 1992; Richardson and Jimenez-Flores, 1994,	Complex Formation of saponins with cholesterol has been used for the removal of cholesterol from dairy products such as butter oil
Cosmetics Applications	
Yoo et al., 2003, Bonte et al., 1998, Bombardelli et al., 2001.	Delay the aging process of the skin and prevent acne
Indena, 2005; Olmstead, 2002; Brand and Brand, 2004.	As natural non-ionic surfactants, they find widespread use as emulsifying, foaming agents and detergents. shower gels, shampoos, foam baths, hair conditioners and lotions, liquid soaps, baby care products, mouth washes, and toothpastes
Pharmaceutical/Health Applicatio	ns
Diosgenin hecogenin from <i>Agave</i> Species	Steroid hormones and drugs synthesis of progesterone
CR Kensil, 2005	Immunological adjuvants in veterinary vaccine formulations
Ginseng Dammarane Sapogenins	The chemopreventive and chemotherapeutic activities
Betulinic acid derivatives Panacos, 2005	HIV drugs called Maturation Inhibitors inflammation
Forse and Chavali, 1997	Infection
Bombardelli and Gabetta, 2001	Alcoholism
Bombardelli and Gabetta, 2001	Pre- and post-menopausal symptoms
Yao et al., 2005	Cardiovascular and cerebrovascular diseases such as coronary
Hidvegi, 1994	Heart disease and hypertension
Ma et al., 2003	Prophylaxis and dementia
Satoshi et al., 2004	Ultraviolet damage including cataract, and carcinoma cutaneum
Kim et al., 2003a	Gastritis, gastric ulcer, and duodenal ulcer

Table 3: COMMERCIAL APPLICATIONS OF SAPONINS

References

- 1. Abdel-Gawad, M.M., El-Sayed, M.M. and Abdel-Hameed, E.S., (1999) Molluscicidal steroidal saponins and lipid content of Agave decipiens. Fitoterapia 70: 371–381.
- 2. Ahn, B.-Z., Yoon, Y.-D., Lee, Y.H., Kim, B.-H. and Sok, D.-E., (1998) Inhibitory effect of bupleuri radix saponins on adhesion of some solid tumor cells and relation to hemolytic action: Screening of 232 herbal drugs for anti-cell adhesion. Planta Medica 64: 220–224.
- Alice, C.B., Vargas, V.M.F., Silva, G.A.A.B., de Siqueira, N.C.S., Schapoval, E.E.S., Gleye, J., Henriques, J.A.P., and Henriques, A.T. (1991) Screening ofplants used in south Brazilian folk medicine. J. Ethnopharmacol., 35:165

Pharmacologyonline 2: 61-84 (2009)

Newsletter

- 4. Apers, S., Varonikova, S., Sindambiwe, J.-B., Witvrouw, M., De Clercq, E., Vanden Berghe, D., Van Marck, E., Vlietinck, A. and Pieters, L., (2001) Antiviral, haemolytic and molluscicidal activities of triterpenoid saponins from Maesa lanceolata: establishment of structure–activity relationships. Planta Medica 67: 528–532.
- Barthomeuf, C., Debiton, E., Mshvildadze, V., Kemertelidze, E. and Balansard, G., (2002) In vitro activity of hederacolchisid A₁ compared with other saponins from Hedera colchica against proliferation of human carcinoma and melanoma cells. Planta Medica 68:672–675.
- 6. Bhaggan, K., Cain, F.W., Pierce, J.H., Rogers, J.S., and Schmid, U. (2001) Fat blends with crystal modifiers. EP Patent 1,123,659 A1
- 7. Bombardelli, E., and Gabetta, B. (2001) Soya extract, process for its preparation and pharmaceutical composition. US Patent 6,280,777.
- 8. Bombardelli, E., Morazzoni, P., Cristoni, A., and Seghizzi, R. (2001) Pharmaceutical and cosmetic formulations with antimicrobial activity. US Patent Application 2001/0046525 A1.
- 9. Brand, H., and Brand, E. (2004) A weighty issue. Soap, Perfumery & Cosmetics Asia, March: 27–31.
- 10. Bruneton, J, (1995) Pharmacognosy, Phytochemistry, Medicinal Plants. Lavoisier Publishing, Paris, pp. 538–544 (ISBN 2-4730-0028-7).
- 11. CR Kensil, U Patel, M Lennick and D Marciani Separation and characterization of saponins with adjuvant activity from Quillaja saponaria Molina cortex The Journal of Immunology, 146(2), 431-437.
- 12. da Silva, B.P., De Sousa, A.C., Silva, G.M., Mendes, T.P. and Parente, J.P., (2002) A new bioactive steroidal saponin from Agave attenuata. Zeitschrift fur Naturforschung C 57: 423–428.
- 13. Da Wei Li, Jin Ee Hyun, Choon Sik Jeong, Yeong Shik Kim, Eun Bang Lee (2003) Antiinflammatory activity of α -hederin methyl ester from the alkaline hydrolysate of the butanol fraction of Kalopanax pictus bark extract Biological & pharmaceutical bulletin, 26(4):429-433.
- de Lucca, A., Bland, J.M., Vigo, C.B., Cushion, M., Selitrennikoff, C.P., Peter, J. and Walsh, T.J., (2002) CAY-1, a fungicidal saponin from Capsicum sp. fruit. Medical Mycology 40:131–137.
- 15. De Tommasi, N., Autore, G., Bellino, A., Pinto, A., Pizza, C., Sorrentino, R. and Venturella, P., (2000) Antiproliferative triterpene saponins from Trevesia palmata. Journal of Natural Products 63: 308–314.
- 16. Delmas, F., Di Giorgio, C., Elias, R., Gasquet, M., Azas, Mshvildadze, V., Dekanosidze, G., Kemertelidze, E., Timon-David, P.,(2000). Antileishmanial activity of three saponins isolated from ivy, α -hederin, β -hederin and hederacolchiside A₁, as compared to their action on mammalian cells cultured in vitro. Planta Medica 66: 343–347.
- 17. Dong, M., Feng, X.-Z., Wang, B.-X., Wu, L.-J. and Ikejima, T., (20010 Two novel furostanol saponins from the rhizomes of Dioscorea panthaica Prain et Burkill and their cytotoxic activity. Tetrahedron 57:501–506.
- 18. Dong, M., Feng, X.-Z., Wu, L.-J., Wang, B.-X. and Ikejima, T., (2001) Two new steroidal saponins from the rhizomes of Dioscorea panthaica and their cytotoxic activity. Planta Medica 67:853–857.

Pharmacologyonline 2: 61-84 (2009)

Newsletter

- 19. ElSohly, H.N., Danner, S., Li, X.-C., Nimrod, A.C. and Clark, A.M., (1999) New antimycobacterial saponin from Colubrina retusa. Journal of Natural Products 62:1341–1342.
- 20. Erich Heftmasn and Alma Levast Hayden (1951) Paper chromatography of steroid sapogenins and their acetates, The journal of biochemistry, 11: 47-55.
- 21. Escalante, A.M., Santecchia, C.B., López, S.N., Gattuso, M.A., Ravelo, A.G., Monache, F.D., Sierra, M.G. and Zacchino, S.A., (2002) Isolation of antifungal saponins from Phytolacca tetramera, an Argentinean species in critic risk. Journal of Ethnopharmacology 82:29–34.
- Estrada, A., Katselis, G.S., Laarveld, B. and Barl, B., (2000) Isolation and evaluation of immunological adjuvant activities of saponins from Polygala senega L. Comparative Immunology. Microbiology and Infectious Diseases 23: 27–43.
- Estrada, A., Li, B., and Laarveld, B. (1998) Adjuvant action of Chenopodium quinoa saponins on the induction of antibody responses to intragastric and intranasal administered antigens in mice. Comp. Immunol. Microb. 21:225–236.
- Fattorusso, E., Lanzotti, V., Taglialatela-Scafati, O., Di Rosa, M. and Ianaro, A., (2000) Cytotoxic saponins from bulbs of Allium porrum L. Journal of Agricultural and Food Chemistry 48:3455–3462.
- Fenwick, G. R., Price, K. R., Tsukamoto, C., and Okubo, K. (1991) Saponins. In: J.P.F. D'Mello, C.M. Duffus, and J.H. Duffus, Eds. Toxic Substances in Crop Plants. The Royal Society of Chemistry, Cambridge, :285–327.
- 26. Gaidi, G., Miyamoto, T., Laurens, V. and Lacaille-Dubois, M.-A., (2002) New acylated triterpene saponins from Silene fortunei that modulate lymphocyte proliferation. Journal of Natural Products 65:1568–1572.
- 27. Gaidi, G., Miyamoto, T., Rustaiyan, A., Laurens, V. and Lacaille-Dubois, M.-A., (2000) Two new biologically active triterpene saponins from Acanthophyllum squarrosum. Journal of Natural Products 63:1497–1502.
- 28. Giichi, H. (1987) Production of saponin containing no isoflavone from soybean embryo bud. JP Patent 62,005,917.
- 29. Glenda I Scott, Peter B Colligan, Bonnie H Ren, and Jun Ren (2001) Ginsenosides Rb1 and Re decrease cardiac contraction in adult rat ventricular myocytes: role of nitric oxide, Br J Pharmacol. November; 134(6): 1159–1165.
- Gosse, B., Gnabre, J., Bates, R.B., Dicus, C.W., Nakkiew, P. and Huang, R.C.C., (2002) Antiviral saponins from Tieghemella heckelii. Journal of Natural Products 65:1942–1944.
- 31. Hae-Ung Lee, Eun-Ah Bae, Myung Joo Han, Nam-Jae Kim and Dong-Hyun Kim (2005) Hepatoprotective effect of ginsenoside Rb1 and compound K on tert-butyl hydroperoxide-induced liver injury Liver International, 25(5):1069 – 1073.
- 32. Hidvegi, M. (1994) Process for the preparation of a pharmaceutical composition selectively lowering the blood-lipid level. US 5,277,910.
- 33. Hiromichi Matsuura, (2001) Saponins in Garlic as Modifiers of the Risk of Cardiovascular Disease, Journal of Nutrition. 131:1000S-1005S.
- 34. Hostettmann, K., and Marston, A. (1995) Saponins. Cambridge University Press, Cambridge, New York.
- 35. Huang, H.-C., Liao, S.-C., Chang, F.-R., Kuo, Y.-H. and Wu, Y.-C., (2003) Molluscicidal saponins from Sapindus mukorossi, inhibitory agents of golden apple

snails, Pomacea canaliculata. Journal of Agricultural and Food Chemistry 51: 4916–4919

- 36. Ibanoglu, E., and Ibanoglu, S. (2000) Foaming behavior of liquorice (Glycyrrhiza glabra) extract. Food Chem., 70:333–336.
- 37. Indena. (2005) Horse chestnut saponins. http://www.indena.com/pdf/cosmleaf. pdf, accessed 24/8/2005.
- 38. Iorizzi, M., Lanzotti, V., Ranalli, G., De Marino, S. and Zollo, F., (2002) Antimicrobial furostanol saponins from the seeds of Capsicum annuum L. var. acuminatum. Journal of Agricultural and Food Chemistry 50:4310–4316.
- Itabashi, M., Segawa, K., Ikeda, Y., Kondo, S., Naganawa, H., Koyano, T. and Umezawa, K., (1999) A new bioactive steroidal saponin, furcreastatin, from the plant Furcraea foetida. Carbohydrate Research 323:57–62.
- 40. Jayatilake, G.S., Freeberg, D.R., Liu, Z., Richheimer, S.L., Blake, M.E., Bailey, D.T., Haridas, V. and Gutterman, J.U., (2003) Isolation and structures of avicins D and G: in vitro tumor-inhibitory saponins derived from Acacia victoriae. Journal of Natural Products 66:779–783.
- Just, M.J., Recio, M.C., Giner, R.M., Cuéllar, M.J., M ñez, S., Bilia, A.R. and Ríos, J.-L., (1998) Anti-inflammatory activity of unusual lupane saponins from Bupleurum fruticescens. Planta Medica 64:404–407.
- 42. Kang, R. K. L., Zyzak, L. L., and Nakatsu, T. (1999) Flavored product additive and method for using same. US Patent 5, 948,460.
- 43. Kanzaki, T., Morisaki, N., Shiina, R. and Saito, Y., (1998) Role of transforming growth factor- pathway in the mechanism of wound healing by saponin from Ginseng Radix rubra. British Journal of Pharmacology 125: 255–262
- Kennelly, E. J., Suttisri, R., and Kinghorn, A. D. (1996) Novel sweet-tasting saponins of the cycloartane, oleanane, secodammarane, and steroidal types. In: G.R.Waller, and K. Yamasaki, Eds., Saponins Used in Food and Agriculture. Plenum Press, New York, 13–24.
- 45. Kim, D.-H., Bae, E.-A., Han, M.-J., Choo, M.-K., Park, E.-K., and Park, J.-H.(2003a) Novel use of the extract of processed panax genus plant and saponin compound isolated therefrom. US Patent Application 2003/0190377 A1.
- 46. Kim, D.S., Oh, S.R., Lee, I.S., Jung, K.Yl., Park, J.D., Kim, S.I. and Lee, H-K., (1998) Anticomplementary activity of Ginseng saponins and their degradation products. Phytochemistry 47:397–399.
- 47. Kim, H.-S., Jang, C.-G., Oh, K.-W., Oh, S., Rheu, H.-M., Rhee, G.-S., Seong, Y.-H. and Park, W.-K., (1998) Effects of ginseng total saponin on morphine-induced hyperactivity and conditioned place preference in mice. Journal of Ethnopharmacology 60:33–42.
- 48. Kinjo J., Arao T., Udayama M., Nohara T., (1998) Preventive effects of saponins from the Pueraria lobata root on in vitro immunological liver injury of rat primary hepatocyte cultures Planta medica, 64(5):413-416.
- 49. Kinjo, J., Yokomizo, K., Hirakawa, T., Shii, Y., Nohara, T. and Uyeda, M., (2000) Anti-herpes virus activity of fabaceous triterpenoidal saponins. Biological and Pharmaceutical Bulletin 23:887–889.
- 50. Kitagawa, I. 1986. Method of isolating soyasaponins. US Patent 4,594,412.

Pharmacologyonline 2: 61-84 (2009) Newsletter Deore *et al.*

- Kuroda, M., Mimaki, Y., Hasegawa, F., Yokosuka, A., Sashida, Y. and Sakagami, H., (2001) Steroidal glycosides from the bulbs of Camassia leichtlinii and their cytotoxic activities. Chemical and Pharmaceutical Bulletin 49:726–731.
- 52. Kwak, W.J., Han, C.K., Chang, H.W., Kim, H.P., Kang, S.S. and Son, K.H., (2003) Loniceroside C, an antiinflammatory saponin from Lonicera japonica. Chemical and Pharmaceutical Bulletin 51:333–335.
- 53. Lee, S.-C., Moon, Y.-S. and You, K.-H., (2000) Effects of red ginseng saponins and nootropic drugs on impaired acquisition of ethanol-treated rats in passive avoidance performance. Journal of Ethnopharmacology 69:1–8.
- 54. Lee, S.-J., Sung, J.-H., Lee, S.-J., Moon, C.-K. and Lee, B.-H., (1999) Antitumor activity of a novel ginseng saponin metabolite in human pulmonary adenocarcinoma cells resistant to cisplatin. Cancer Letters 144:39–43.
- 55. Li, D.W., Lee, E.B., Kang, S.S., Hyun, J.E. and Whang, W.K., (2002) Activityguided isolation of saponins from Kalopanax pictus with anti-inflammatory activity. Chemical and Pharmaceutical Bulletin 50:900–903.
- 56. Li, X.-C., ElSohly, H.N., Nimrod, A.C. and Clark, A.M., (1999) Antifungal jujubogenin saponins from Colubrina retusa. Journal of Natural Products 62:674–677
- 57. Liu, J., and Henkel, T. (2002) Traditional Chinese Medicine (TCM): Are polyphenols and saponins the key ingredients triggering biological activities? Curr. Med. Chem., 9:1483–1485.
- 58. Liu, W.K., Xu, S.X. and Che, C.T., (2000) Anti-proliferative effect of ginseng saponins on human prostate cancer cell line. Life Sciences 67:1297–1306.
- 59. Ma, B., Dong, J., andWang, B. (2003) Use of steroidal saponins for the propylaxis or treatment of dementia, and novel steroidal saponin compounds. US Patent 6,593,301.
- 60. Ma, W.G., Mizutani, M., Malterud, K.E., Lu, S.L., Ducrey, B. and Tahara, S., (1999) Saponins from the roots of Panax notoginseng. Phytochemistry 52:1133–1139.
- 61. Manish Gautam, Sham Diwanay, Sunil Gairolac, Yojana Shinde, Pralhad Patki, and Bhushan Patwardhan, (2004) Immunoadjuvant potential of Asparagus racemosus aqueous extract in experimental system Journal of Ethnopharmacology Volume 91(2-3): 251-255.
- Marquina, S., Maldonado, N., Garduño-Ramírez, M.L., Aranda, E., Villarreal, M.L., Navarro, V., Bye, R., Delgado, G. and Alvarez, L., (2001) Bioactive oleanolic acid saponins and other constituents from the roots of Viguiera decurrens. Phytochemistry 56:93–97.
- 63. Mayank Thakur, Shilpi Bhargava and V. K. (2007) Dixit Immunomodulatory Activity of *Chlorophytum borivilianum* Sant. F, eCAM 4(4):419-423.
- 64. Micich, T. J., Foglia, T. A., and Holsinger, V. H. (1992) Polymer-supported saponins: An approach to cholesterol removal from butteroil. J. Agric. Food Chem., 40:1321– 1325.
- 65. Mimaki, Y., Kuroda, M., Asano, T. and Sashi, Y., (1999) Triterpene saponins and lignans from the roots of Pulsatilla chinensis and their cytotoxic activity against HL-60 cells. Journal of Natural Products 62:1279–1283.
- 66. Mimaki, Y., Kuroda, M., Ide, A., Kameyama, A., Yokosuka, A. and Sashida, Y., (1999) Steroidal saponins from the aerial parts of Dracaena draco and their cytostatic activity on HL-60 cells. Phytochemistry 50:805–813.

Pharmacologyonline 2: 61-84 (2009) Newsletter Deore *et al.*

- 67. Mimaki, Y., Kuroda, M., Kameyama, A., Yokosuka, A. and Sashida, Y., (1998) Steroidal saponins from the underground parts of Ruscus aculeatus and their cytostatic activity on HL-60 cells. Phytochemistry 48:485–493.
- 68. Mimaki, Y., Kuroda, M., Kameyama, A., Yokosuka, A. and Sashida, Y., (1998) Steroidal saponins from the rhizomes of Hosta sieboldii and their cytostatic activity on HL-60 cells. Phytochemistry 48:1361–1369.
- 69. Mimaki, Y., Watanabe, K., Ando, Y., Sakuma, C., Sashida, Y., Furuya, S. and Sakagami, H., (2001) Flavonol glycosides and steroidal saponins from the leaves of Cestrum nocturnum and their cytotoxicity. Journal of Natural Products 64:17–22.
- Miyakoshi, M., Tamura, Y., Masuda, H., Mizutani, K., Tanaka, O., Ikeda, T., Ohtani, K., Kasai, R. and Yamasaki, K., (2000) Antiyeast steroidal saponins from Yucca schidigera (Mohave yucca), a new anti-food-deteriorating agent. Journal of Natural Products 63:332–338.
- 71. Mshvildadze, V., Favel, A., Delmas, F., Elias, R., Faure, R., Decanosidze, G., Kemertelidze, E. and Balansard, G., (2000) Antifungal and antiprotozoal activities of saponins from Hedera colchica. Pharmazie 55:325–326.
- 72. Muir, A. D., Paton, D., Ballantyne, K., and Aubin, A. A. (2002) Process for recovery and purification of saponins and sapogenins from quinoa (Chenopodium quinoa). US Patent 6,355,249.
- 73. Muller, R.E., and Morris, R.J. Jr. (1966) Sucrose-ammoniated glycyrrhizin sweetening agent. US Patent 3,282,706.
- Navarro, P., Giner, R.M., Recio, M.C., Máñez, S., Cerdá-Nicols, M. and Ríos, J.-L., (2001) In vivo anti-inflammatory activity of saponins from Bupleurum rotundifolium. Life Sciences 68:1199–1206.
- 75. Nocerino, E., Amato, M. and Izzo, A.A., (2000) The aphrodisiac and adaptogenic properties of ginseng. Fitoterapia 71: S1–S5
- 76. Nozomi, O., Haruo, S., Shisai, R., Fuku, S., Hikari, J., Toshi, H., and Bunshi, K. (1986) Saikosaponin. JP Patent 61,282,395.
- 77. Oda, K., Matsuda, H., Murakami, T., Katayama, S., Ohgitani, T. and Yoshikawa, M., (2000) Adjuvant and haemolytic activities of 47 saponins derived from medicinal and food plants. Biological Chemistry 381:67–74.
- 78. Olmstead, M. J. (2002) Organic toothpaste containing saponin. US Patent 6,485,711 B1.
- 79. Panacos. (2005) A new generation of anti-infective drugs. http://www. panacos.com/product 2.htm, accessed 11/10/2005.
- 80. Parab, R.S. and Mengi, S.A., (2002) Hypolipidemic activity of Acorus calamus L. in rats. Fitoterapia 73:451–455.
- Park, H.-J., Kwon, S.-H., Lee, J.-H., Lee, K.-H., Miyamoto, K.I. and Lee, K.-T., (2001) Kalopanaxsaponin A is a basic saponin structure for the anti-tumor activity of hederagenin monodesmosides. Planta Medica 67:118–121.
- 82. Price, K. R., Griffiths, N. M., Curl, C. R., and Fenwick, G. R. (1985) Undesirable sensory properties of the dried pea (pisum sativum). The role of saponins. Food Chem., 17:105–115.
- Price, K. R., Johnson, I. T., and Fenwick, G. R. (1987) The chemistry and biological significance of saponins in foods and feeding stuffs. CRC Crit. Rev. Food Sci., 26:27–135.

- 84. Qiu, S.-X., Li, X.-C., Xiong, Y., Dong, Y., Chai, H., Farnsworth, N.R., Pezzuto, J.M. and Fong, H.H.S., (2000) Isolation and characterization of cytotoxic saponin chloromaloside A from Chlorophytum malayense. Planta Medica 66P:587–590.
- 85. Quiroga, E.N., Sampietro, A.R. and Vattuone, M.A., (2001) Screening antifungal activities of selected medicinal plants. Journal of Ethnopharmacology 74:89–96.
- 86. R. H. Manske, Geoffrey A. Cordell, R. G. A. Rodrigo, H.L. Holmes, Arnold Brossi Alkaloids Chemistry and Physiology: The alkaloid chemistry and physiology Published by Academic Press, 1981.
- 87. Richardson, T., and Jimenez-Flores, R. (1994) Process to remove cholesterol from dairy products. US Patent 5,326,579.
- Sagesaka-Mitane Y, Sugiura T, Miwa Y, Yamaguchi K, Kyuki K. (1996) Effect of tea-leaf saponin on blood pressure of spontaneously hypertensive rats, Yakugaku Zasshi. 116(5):388-95.
- 89. Sarnthein-Graf, C., and La Mesa, C. (2004) Association of saponins in water and water-gelatine mixtures. Thermochim. Acta, 418:79–84.
- 90. Satoshi, M., Erihi, O., and Satariyo, G. (2004) Composition for preventing or ameliorating ultraviolet damage. JP Patent 2,004,131,431.
- 91. Shirakawa, Y., Itoh, M., Koyama, K., and Minowa, Y. (1986) Aqueous preparation containing vitamin E and saponins. US Patent 4,568,667.
- 92. Sindambiwe, J.B., Calomme, M., Geerts, S., Pieters, L., Vlietinck, A.J. and Vanden Berghe, D.A., (1998) Evaluation of biological activities of triterpenoid saponins from Maesa lanceolata. Journal of Natural Products 61:585–590.
- 93. Sirtori, C.R., (2001) Aescin: Pharmacology, pharmacokinetics and therapeutic profile. Pharmacological Research 44:183–193.
- 94. Sparg, S.G., Light, M.E., and van Staden, J. (2004) Biological activities and distribution of plant saponins. J. Ethnopharmacol., 94:219–243.
- 95. Tezuka, Y., Honda, K., Banskota, A.J., Thet, M.M. and Kadota, S., (2000) Kinmoonosides A–C, three new cytotoxic saponins from the fruits of Acacia concinna, a medicinal plant collected in Myanmar. Journal of Natural Products 63:1658–1664.
- 96. Traore, F., Faure, R., Olivier, E., Gasqet, M., Azas, N., Debrauwer, L., Keita, A., Timon-David, P. and Balansard, G., (2000) Structure and antiprotozoal activity of triterpenoid saponins from Glinus oppositifolius. Planta Medica 66:368–371.
- 97. Treyvaud, V., Marston, A., Dyatmiko, W. and Hostettmann, K., (2000) Molluscicidal saponins from Phytolacca icosandra. Phytochemistry 55:603–609.
- 98. Voutquenne, L., Guinot, P., Thoison, O., Sevenet, T. and Lavaud, C., (2003) Oleanolic glycosides from Pometia ridleyi. Phytochemistry 64:781–789.
- 99. W A Oleszek Chromatographic determination of plant saponins Journal of chromatography. A. 08/2002; 967(1):147-62.
- 100. Wang, Z.-W., Gu, M.-Y., and Li, G.-Z. (2005) Surface properties of gleditsia saponin and synergisms of its binary system. J. Disper. Sci. Technol., 26:341–347.
- 101. Woldemichael, G.M. and Wink, M., (2001) Identification and biological activities of triterpenoid saponins from Chenopodium quinoa. Journal of Agricultural and Food Chemistry 49:2327–2332.

- 102. Xiao, K., Yi, Y.-H., Wang, Z.-Z., Tang, H.-F., Li, Y.-Q. and Lin, H.-W., (1999) A cytotoxic triterpene saponin from the root bark of Aralia dasyphylla. Journal of Natural Products 62:1030–1032.
- 103. Yang, X.-W., Zhao, J., Cui, Y.-X., Liu, X.-H., Ma, C.-M., Hattori, M. and Zhang, L-H., (1999) Anti-HIV-1 protease triterpenoid saponins from the seeds of Aesculus chinensis. Journal of Natural Products 62:1510–1513
- 104. Yao X., Li, L., and Wang N. (2005) New use of saponin compound for treating cardiovascular disease. CN Patent 1,562,064.
- 105. Yeda, E. and Takaishi, Y., (1999) A saponin with anti-ulcerogenic effect from the flowers of Spartium junceum. Phytochemistry 51:903–908.
- 106. Yokosuka, A., Mimaki, Y. and Sashida, Y., (2002) Spirostanol saponins from the rhizomes of Tacca chantrieri and their cytotoxic activity. Phytochemistry 61:73–78.
- 107. Yokosuka, A., Mimaki, Y. and Sashida, Y., (2002) Spirostanol saponins from the rhizomes of Tacca chantrieri and their cytotoxic activity. Phytochemistry 61:73–78.
- 108. Yoo, B.H., Kang, B.Y., Yeom, M.H., Sung, D.S., Han, S.H., Kim, H.K., and Ju, H.K. (2003) Nanoemulsion comprising metabolites of ginseng saponin as an active component and a method for preparing the same, and a skin care composition for anti-aging containg the same. US Patent Application 2003/0175315 A1.
- 109. Yoshikawa M., Matsuda H, Murakami T., Ninomiya K., Inadzuki M., (1997) New hepatoprotective saponins, bupleurosides III, VI, IX, and XIII, from Chinese Bupleuri Radix: Structure-requirements for the cytoprotective activity in primary cultured rat hepatocytes, Bioorganic & medicinal chemistry letters, 7(17):2193-2198.
- 110. Yoshikawa, M., Morikawa, T., Kashima, Y., Ninomiya, K. and Matsuda, H., (2003) Structures of new dammarane-type triterpene saponins from the flower buds of Panax notoginseng and hepatoprotective effects of principal ginseng saponins. Journal of Natural Products 66, 922–927
- 111. Yui, S., Ubukata, K., Hodono, K., Kitahara, M., Mimaki, Y., Kuroda, M., Sashida, Y. and Yamazaki, M., (2001) Macrophage-oriented cytotoxic activity of novel triterpene saponins extracted from roots of Securidaca inappendiculata. International Immunopharmacology 1:1989–2000.
- 112. Yun, T.-K., (2003) Experimental and epidemiological evidence on non-organ specific cancer preventive effect of Korean ginseng and identification of active compounds. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 523/524:63–74.
- 113. Zou, K., Zhao, Y., Tu, G., Cui, J., Jia, Z. and Zhang, R., (2000) Two diastereomeric saponins with cytotoxic activity from Albizia julibrissin. Carbohydrate Research 324:182–188.