ANTIMICROBIAL ACTIVITY OF SOME 2-SUBSTITUTED BENZOTHIAZOLES SYNTHESIZED FROM 2-AMINOTHIOPHENOL

R.S. Jeyaprakash¹*, Meena Tiwari², Hashif K¹, K.K.Srinivasan¹, N.Sivagurunathan¹.

¹ Manipal College of Pharmaceutical Sciences, Manipal, Karnataka-576104 ²Department of Pharmacy, Shri G.S.Institute of Technology and Science, Indore, Madhya Pradesh.

Corresponding author

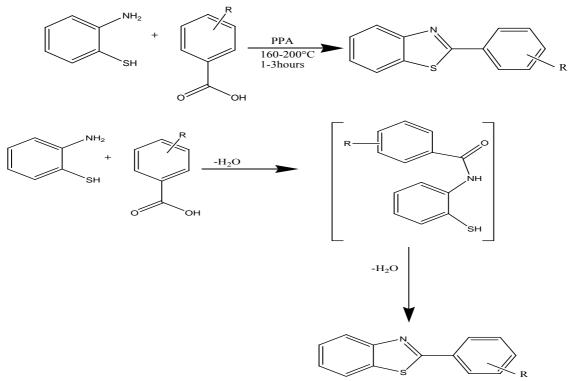
R.S. Jeyaprakash, Senior lecturer, Department of Pharmaceutical Chemisty, Manipal College of Pharmaceutical Sciences, Manipal E-Mail: jeyaprakasham@yahoo.com Phone: 09742351531

Summary

Benzothiazole nucleus is considered to be biologically most important, as its derivatives find wide pharmacological applications. The synthesis and evaluation of various biological activities of benzothiazoles with heterocyclic substitution at various positions were reported earlier¹. Substituted benzothiazoles are a major class of anti-infectives with significant potential for continuous development. In our present work 2-substituted benzothiazoles were synthesized and evaluated for their antimicrobial activity against *Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Candida albicans* and *Aspergillus niger*. Sulphadiazine and ketaconazole were used as standards for antibacterial and antifungal activity, respectively.

Key-words: Benzothiazole, antimicrobial activity, tube-dilution method.

Introduction


Anti-infective agents treat infection by suppressing or destroying the causative microorganisms such as bacteria, mycobacteria, fungi, protozoa or viruses. Anti-infective agents derived from microorganisms are called antibiotics; those produced from synthetic substances are called antimicrobials². At the time of Hippocrates, wine and vinegar were used in wound dressings. Pasteur introduced the concept of sterilization of surgical instruments by heat and Hister used phenol to kill bacteria on instruments, dressings and other operating materials. Those led to the development of a number of non-antibiotic antimicrobial agents³.

Bio-isosteric relations constitute one of the most familiar tools in medicinal chemistry. The Sulphur and Nitrogen are considered to be isosteric pair and activity is retained in the compound by such a bio-isosteric substitution⁴. The versatility of Benzothiazole nucleus makes it a significant compound in the treatment of various diseases. Benzothiazole inhibits the growth of various bacteria, fungi, yeast, protozoa and helminthes. Determination of antimicrobial effectiveness against specific pathogen is essential for proper therapy. Bacterial genomic sequencing will greatly amplify the number of targets that can be screened for decades to come in the continuing and necessary search for new antibacterial agents⁵. The present work aims at, synthesis of various Benzothiazole derivatives, evaluation of antibacterial and antifungal activities.

Materials and Methods

Synthesis of 2-substituted benzothiazoles

Compounds in which the aromatic or alicyclic ring is directly attached to second position of benzothiazole ring were synthesized from o-aminothiophenol by reaction with carboxylic acids in the presence of polyphosphoric acid. The reaction was carried out at 160-200°C for 1-3 hours. In the first step, o-aminothiophenol reacts with aromatic or alicyclic acid to form the intermediate amide with the loss of a water molecule. In the next step, cyclization of the amide takes place to form the corresponding benzothiazole, substituted at second position with aromatic or alicyclic ring.

PPA : Polyphosphoric acid, R: substitution

Comp Code	Empirical Formula	Structure	Yield	Melting Point	R _f Value	Mol.wt	Partition Coefficient
JP1	C ₁₄ H ₁₁ ONS		71%	90°C	0.69	241	3.767
JP2	C ₁₇ H ₁₁ NS		45%	_	0.75	261	5.352
JP3	$C_{20}H_{12}S_2$		61%	98°C	0.67	344	5.614

Table 1-Physical characteristics of synthesized compounds

Physical Characteristics of Synthesized compounds:

The synthesized compounds were soluble in ethyl acetate and ethanol. The melting points were determined by open capillary method. The structures of the synthesized compounds were confirmed by NMR, MASS, and IR Spectroscopy. The physiochemical characteristics of the synthesised compounds were summarised in Table No.1. The NMR spectra were recorded on NMR-JEOL GSX-400 using CDCl₃ as solvent. The chemical shifts were reported in δ units relative to TMS. IR spectra were recorded on FT-IR Perkin Elmer 1000 using KBr pellets. The results are in confirmatory to the anticipated structures. The UV spectra were recorded on Shimadzu 160A spectrophotometer between 200-400 nm.

Evaluation of antimicrobial activity

Test organisms and drugs used

Ketoconazole obtained from Janssen-cilag pharmaceuticals, Bangalore. Dimethylsulphoxide was purchased from Qualigens Fine chemicals, Mumbai. Sulphadiazine was purchased from Ranbaxy Laboratories Ltd., Delhi. *Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Candida albicans* and *Aspergillus niger* were used as test organisms.

The antimicrobial activity was evaluated by tube-dilution method. It depends upon the inhibition of growth of a microbial culture in a uniform solution of antibiotic in fluid media that is favourable to its rapid growth in the absence of the antibiotic⁶. In this method minimal inhibitory concentration (MIC) of the antimicrobial agent was determined. The MIC is the lowest concentration of an antimicrobial agent that inhibits the growth of the test organism⁷.

Determination of antibacterial activity

Antibacterial activity of synthesized compounds was tested against *Staphylococcus aureus*, *Escherichia coli* and *Bacillus subtilis*. The MIC of the synthesized compounds was determined by broth macrodilution using sterile glass test tubes containing MH broth (supplemented with magnesium and calcium cations). The inoculum contained $5X10^5$ c.f.u/ml. The concentration range tested was 0.078 to 2.5 µg/ml. Test solutions were prepared in DMSO and freshly diluted on the day of testing. Each test was performed in duplicate (CLSI, 1999). Sulphadiazine was used as standard.

Determination of Antifungal activity

Antifungal activity of synthesized compound was tested against *Candida albicans* and *Aspergillus niger*. The MIC of the synthesized compounds was determined by broth macrodilution using sterile glass test tubes containing Sabouraud's glucose broth⁸. The inoculum contained $5X10^5$ c.f.u/ml. The concentration range tested was 0.078 to 2.5 µg/ml. The test solutions were prepared in DMSO and freshly diluted on the day of testing. Each test was performed in duplicate (CLSI, 1999). Ketoconazole was used as standard.

		MIC (µg/ml)						
Comp.	Compound	S.a	B.s	E.c	C.a	A.n		
Code	Name							
JP1	JP1 2- (phenoxymethyl) Benzothiazole		0.6250	0.1560	0.3120	0.1560		
JP2	2-(1-naphthyl) Benzothiazole	0.1560	0.3120	0.3120	0.1560	0.3120		
JP3	1,2-di-(2- benzothiazolyl) Benzene	0.3120	0.3120	0.1560	0.3120	0.6250		
Std	Sulphadiazine	0.1560	0.1560	<0.1560	0.3120	0.1560		
Std	Ketoconazole	0.3120	0.1560	0.3120	<0.1560	0.1560		

Table 2: Microbial growth inhibition data

S.a - *Staphylococcus aureus* C.a - *Candida albicans* B.s - Bacillus subtilis A.n - Aspergillus niger E.c - Escherichia coli

Results and Discussion

Evaluation of Antimicrobial activity

The antimicrobial activity of the synthesized compounds was evaluated by tube-dilution method against bacterial species such as *Staphylococcus aureus, Escherichia coli* and *Bacillus subtilis* and fungal species such as *Candida albicans* and *Aspergillus niger*. The *in vitro* antimicrobial activity was studied for synthesized compounds in comparison with clinical standards sulphadiazine for antibacterial activity and ketoconazole for antifungal activity. Table- 2 summarizes the biological data gathered for the synthesized compounds.

Minimum inhibitory concentration is defined as the lowest concentration of the compound that prevented the growth of test organism after incubation at 37°C for 24 hours for bacteria and incubation at 30°C for 48 hours for *Candida albicans* and 7 days for *Aspergillus niger*.

The results of the antibacterial activity revealed that, all the synthesized compounds showed activity against *Staphylococcus aureus*. Compound JP2 showed maximum activity with MIC value of 0.1560 µg/ml against *Staphylococcus aureus*. All the compounds showed activity against *Bacillus subtilis*. But none of the compounds exhibited activity equal to clinical standard. All the compounds showed activity against *Escherichia coli*. Out of the three compounds synthesized, compounds JP1 and JP3 showed maximum activity with MIC value of 0.1560 µg/ml, against *Escherichia coli*.

The results of the antifungal activity revealed that all the synthesized compounds showed activity against *Candida* albicans. Compound JP2 showed the maximum activity with MIC value of 0.1560 μ g/ml against *Candida albicans*. All the compounds showed activity against *Aspergillus niger*. Compound JP1 showed maximum activity with MIC value of 0.1560 μ g/ml against *Aspergillus niger*.

In conclusion, our study revealed the antimicrobial properties of 2-substituted benzothiazoles. Although the results of *in vitro* studies were encouraging, further *in vivo* studies has to be performed, to establish the safety and efficacy of the synthesised compounds.

References

1. R. D. Haugwitz, R. G. Angel, G. A. Jacobs, B. V. Maurer, V. L. Narayanan, L. R. Cruthers, J. Szanto, Synthesis and anthelmintic activities of novel 2-heteroaromatic-substituted isothiocyanatobenzoxazoles and –benzothiazoles, J. Med. Chem., **1982**, 25 (8), pp 969–974.

2. Leon Shargel, Alan H. Mutnick, Paul F.Souney, Larry N.Swanson. Comprehensive Pharmacy Review, 6th Edn, Lippincot publishers, 2007; 900

3. Kalant M.D, Rochlan, W.H.F., Principles of Medical Pharmacology, 5th Edn. B.C. Deckor Inc., Toronto, 1985; 595.

4. Lednicer O, Mitscher L.A., The organic chemistry of drug synthesis, Wiley Interscience Publication, 1985, Vol III; 178.

5. Chu, Daniel T. W.; Plattner, Jacob J.; Katz, Leonard. New Directions in Antibacterial Research. Journal of Medicinal Chemistry (1996), 39(20), 3853-3874.

6. Pharmacopoeia of India, Vol. II. Published by Ministry of Health Department, Govt. of India, A-88.

7. Cappucino. J and Sherman N., Microbiology, A laboratory manual, 4th Edn., Addison Wesley Longman, Inc., California, 1999; 263.

8. Cruckshank R, Duguid J.O., Marimon B.P. and Swain, R.H.A., Medical Microbiology, 12th Edn., Vol.II, Churchill Livingstone Publication, Newyork, 1975;136.