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Summary 

QSAR (Quantitative Structure Activity Relationships) have been applied for decades in the 
development of relationships between physicochemical properties of chemical substances and 
their biological activities to obtain a reliable mathematical and statistical model for prediction of 
the activities of new chemical entities. (QSAR) have helped the scientists in the development of 
mathematical relationships linking chemical structures and pharmacological activity in 
quantitative manner of series of compound. The fundamental principle underlying the QSAR is 
that the difference in structural properties is responsible for the variations in biological activities 
of the compounds. In the classical QSAR studies, affinities of ligands to their binding sites, 
inhibition constants, rate constants, and other biological end points, with atomic, group or 
molecular properties such as lipophilicity, polarizability, electronic and steric properties (Hansch 
analysis) or with certain structural features (Free-Wilson analysis) have been correlated. QSAR 
certainly decreases the number of compounds to be synthesized by facilitating the selection of 
the most promising candidates. This review seeks to provide a view of the different QSAR 
approaches employed within the current drug discovery process to construct predictive structure– 
activity relationships and also discusses the limitations that are fundamental to these approaches, 
as well as those that might be overcome with the improved strategies.  
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Introduction 

QSARs (Quantitative Structure–Activity relationships) are based on the assumption that the 
structure of a molecule (i.e. its geometric, steric and electronic properties) must contain the 
features responsible for its physical, chemical, and biological properties, and on the ability to 
represent the chemical by one, or more, numerical descriptor(s). By QSAR models, the 
biological activity (or property, reactivity, etc.) of a new or untested chemical can be inferred 
from the molecular structure of similar compounds whose activities (properties, reactivities, etc.) 
have already been assessed. The QSPR (Quantitative Structure–Property relationship) 
acronymous is used when a property is modeled. Simply it means that “The structure of chemical 
compound influences its properties and bioactivity. QSAR in simplest terms, is a method for 
building computational or mathematical models which attempts to find a statistically significant 
correlation between structure and function using a chemometric technique. In terms of drug 
design, structure here refers to the properties or descriptors of the molecules, their substituents or 
interaction energy fields, function corresponds to an experimental biological/biochemical 
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endpoint like binding affinity, activity, toxicity or rate constants. Various QSAR approaches 
have been developed gradually over a time span of more than a hundred years and served as a 
valuable predictive tool, particularly in the design of pharmaceuticals and agrochemicals. All one 
and two dimensional and related methods are commonly referred to as ‘classical’ QSAR 
methodologies. It is sometime used in more sense as a hansch analysis. The introduction of the 
Hansch model in 1964 enabled medicinal chemists to formulate their hypothesis of structure 
activity relationships in quantitative terms and to check these hypotheses by means of statistical 
methods. From such QSAR, it is possible to elucidate the influence of various physiological 
properties on drug potency and to predict activity values for new compounds within certain 
limits. QSAR is essentially a computerised statistical method which tries to explain the observed 
variance in the biological effect of certain classes of compounds as a function of molecular 
changes caused by the substituents. It assumes that the potency of a certain biological activity 
exerted by a series of congeneric compounds is a function of various physicochemical 
parameters of the compounds. Once statistical analysis shows that certain physico-chemical 
properties are favourable to the concerned activity, the concerned activity can be optimized by 
choosing such substituents which would enhance such physicochemical properties. Description 
of the molecular structure, electronic orbital reactivity and the role of structural and steric 
components have been the subject of mathematical and statistical analysis. The ultimate object of 
such studies is to understand the forces governing the activity of a particular compound or a class 
of compounds. QSAR vary to an appreciable extent in depth and sophistication based on the 
nature of evaluation of structure or activity. A purposeful relation of structural variables must 
include steric factors, electronic features of component functional groups and the molecule as a 
whole. 
 
History of Q.S.A.R  
It has been nearly 40 years since the quantitative structure-activity relationship (QSAR) 
paradigm first found its way into the practice of agrochemistry, pharmaceutical chemistry, 
toxicology, and eventually most facets of chemistry[1]. Crum-Brown and Fraser[2] (1868) 
expressed the idea that the physiological action of a substance in a certain biological system(Ф) 
was a function (f) of its chemical composition and constitution (C). 
 

Ф = f C                                       Equation [1] 
 

Thus, an alteration in chemical constitution, ∆C, would be reflected by an alteration in biological 
activity ∆Ф. Richardson[3] (1868) expressed the chemical structure as a function of solubility. 
Mills[4] (1884) developed a QSPR model for the prediction of melting and boiling points in 
homologous series, results were accurate to better than one degree. Richet[5] (1893) Correlated 
toxicities of a set of alcohols, ethers and ketones with aqueous solubility and showed that their 
cytotoxicities are inversely related to their corresponding water solubilities. Overton and 
Meyer[6,7] (1897, 1899) correlated partition coefficients of a group of organic compounds with 
their anesthetic potencies and concluded that narcotic (depressant) activity is dependent on the 
lipophilicity of the molecules. The seminal work of Hammett[8,9] (1935, 1937) gave rise to the σ-
ρ culture correlated the effect of the addition of a substituent on benzoic acid with the 
dissociation constant, postulated electronic sigma-rho constants and established the linear free-
energy relationship (LFER) principle. 
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Hammett found that a linear relationship resulted when substitutions of different groups were 
made to aromatic compounds. 
 

log K   =  ρ log K’  =  ρ σ 
K0             K0

’ 
 

K0 and K0’ are equilibrium constants for unsubstituted compounds and K and K’ are the 
equilibrium constants for substituted compounds. Hammett used benzoic acid as reference 
compound yielding the σ. To interpret this equation, if the linear relation defines ρ > 1, then the 
effect of the substitutions is greater than making the same substitutions on benzoic acid. The σ 
describes the properties of the substitution groups. If σ is positive, the group is electron 
withdrawing. If σ is negative, the group is electron donating. The magnitude of σ indicates the 
degree of these effects. In 1939, Ferguson[10] correlated depressant action with the relative 
saturation of volatile compounds in their vehicle and introduced a thermodynamic generalization 
to the toxicity. Bell and Roblin[11] (1942) Studied antibacterial activities of a series of 
sulfanilamides in terms of their ionizations. Albert[12] (1948) examined the effects of 
ionization/electron distribution and steric access on the potencies of a multitude of 
aminoacridines. Taft[13] (1952) Postulated a method for separating polar, steric, and resonance 
effects and introduced the first steric parameter, ES. Hansch and Muir[14] (1962) Correlated the 
biological activities of plant growth regulators with Hammett constants and hydrophobicity. 

Using the octanol/water system, a whole series of partition coefficients were measured, 
and thus a new hydrophobic scale was introduced. The parameter π, which is the relative 
hydrophobicity of a substituent, was defined in a manner analogous to the definition of sigma[15]. 

 
ΠX= log PX - log PH                                                              Equation [2] 

 
PX and PH represent the partition coefficients of a derivative and the parent molecule, 
respectively. 
 
The contributions of Hammett and Taft together laid the basis for the development of the QSAR 
paradigm by Hansch and Fujita[16] (1964), which combined the hydrophobic constants with 
Hammett’s electronic constants to yield the linear Hansch equation and its many extended forms. 
 

Log 1/C=a σ + b π + ck 
 
There is a consensus among current predictive toxicologists that Corwin Hansch is the founder of 
modern QSAR. In the classic article[17] it was illustrated that, in general, biological activity for a 
group of ‘congeneric’ chemicals can be described by a comprehensive model: 
 

Log 1/C50 = a π + b ε + c S + d                                                              Equation [3] 
 
In which C, the toxicant concentration at which an endpoint is manifested (e.g. 50% mortality or 
effect), is related to a hydrophobicity term, p, (this is a substituent constant denoting the 
difference in hydrophobicity between a parent compound and a substituted analog, it has been 
replaced with the more general molecular term the log of the 1-octanol/water partition 
coefficient, log Kow), an electronic term, 1, (originally the Hammett substituent constant, s) and a 
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steric term, S, (typically Taft’s substituent constant, ES). Due to the curvilinear, or bilinear, 
relationship between log1/C50 and hydrophobicity normally found in single dose tests the 
quadratic π2 term was later introduced to the model. Hansch[18] (1969) Developed the parabolic 
Hansch equation for dealing with extended hydrophobicity ranges. 
 

Log 1/C= - a (log P) 2 + b. log P + c σ + k 
 
Free and Wilson[19] (1964) formulated an additive model, where the activity is discretized as a 
simple sum of contributions from different substituents. 
 

BA =  � ai xi + u 
 
BA is the biological activity, u is the average contribution of the parent molecule, and ai is the 
contribution of each structural feature; xi denotes the presence Xi = 1 or absence Xi = 0 of a 
particular structural fragment. Fujita and Ban[20] (1971) simplified the Free-Wilson equation 
estimating the activity for the non-substituted compound of the series and postulated Fujita-Ban 
equation that used the logarithm of activity, which brought the activity parameter in line with 
other free energy-related terms. 
 

Log BA =  Gi Xi + u 
 
In this equation, u is defined as the calculated biological activity value of the unsubstituted 
parent compound of a particular series.Gi represents the biological activity contribution of the 
substituents, whereas Xi is ascribed with a value of one when the substituent is present or zero 
when it is absent. Kubinyi[21] (1976) Investigated the transport of drugs via aqueous and lipoidal 
compartment systems and further refined the parabolic equation of Hansch to develop a superior 
bilinear (non-linear) QSAR model. 
 

Log 1/C = a. log P- b.log (β. P + 1) + k 
 
Hansch and Gao[22] (1997) Developed comparative QSAR (C-QSAR), incorporated in the C-
QSAR program. Heritage and Lowis[23,24] (1997) Developed Hologram QSAR (HQSAR), where 
the structures are converted into all possible fragments, which are assigned specific integers, and 
then hashed into a fingerprint to form the molecular hologram. The bin occupancies of these 
holograms are used as the QSAR descriptors, encoding the chemical and topological information 
of molecules. Cho and workers[25] (1998) Developed Inverse QSAR, which seeks to find values 
for the molecular descriptors that possess a desired activity/property value. In other words, it 
consists of finding the optimum sets of descriptor values best matching a target activity and then 
generating a focused library of candidate structures from the solution set of descriptor values. 
Labute[26] (1999) Developed Binary QSAR to handle binary activity measurements from high-
throughput screening (e.g., pass/fail or active/inactive), and molecular descriptor vectors as 
input. A probability distribution for actives and inactives is then determined based on Bayes’ 
Theorem. 
 
QSAR Theory 
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The overall goals of QSAR retain their original essence and remain focused on the predictive 
ability of the approach and its receptiveness to mechanistic interpretation. Rigorous analysis and 
fine-tuning of independent variables has led to an expansion in development of molecular and 
atom-based descriptors, as well as descriptors derived from quantum chemical calculations and 
spectroscopy[27]. It is now possible not only to develop a model for a system but also to compare 
models from a biological database and to draw analogies with models from a physical organic 
database[28]. This process is dubbed model mining and it provides a sophisticated approach 
to the study of chemical-biological interactions. All QSAR analyses are based on the assumption 
of linear additive contributions of the different structural properties or features of a compound to 
its biological activity, provided that there are no nonlinear dependences of transport or binding 
on certain physicochemical properties. This simple assumption is proven by some dedicated 
investigations, for example the scoring function of the de novo drug design program LUDI 
(eqn.1)[29,30,31] ; in addition, the results of many Free Wilson and Hansch analyses support this 
concept. 

∆Gbinding = ∆G0 + ∆Ghb + ∆Gionic + ∆Glipo + ∆Grot                                (1) 

Overall loss of translational and rotational entropy, 

∆Gbinding = + 5.4KJ mol-1 

Ideal neutral hydrogen bond, ∆Ghb= -4.7 KJ mol-1 

Ideal ionic interaction, ∆Gionic = -8.3 KJ mol-1 

Lipophilic contact, ∆Glipo = -0.17 J mol-1 Ǻ-2 

Entropy loss per rotatable bond of the ligand, ∆Grot  = +1.4 KJ mol-1 

Eqn.1 correlates the free energy of binding,  ∆Gbinding, with a constant term, ∆G0, that describes 
the loss of overall translational and rotational degrees of freedom and  ∆Ghb, ∆Gionic and ∆Glipo, 
which are structure-derived energy terms for neutral and charged hydrogen bond interactions and 
hydrophobic interactions between the ligand and the protein; ∆Grot describes the loss of internal 
rotational degrees of freedom of the ligand. Eqn1 1 holds for a wide range of energy values: the       
∆Gbinding  of 45 different ligand-protein complexes ranges from -9 to -76 KJ mol-1, which 
corresponds to binding constants between 2.5 × 10 -2 M and 4 × 10-14 M; its standard deviation of 
7.9 KJ mol-1 corresponds to a mean error of about 1.4 log units in the prediction of ligand  
binding constants from the mathematical model[29,30,31]. Because of the extrathermodynamic 
relationship between free energies ∆G and equilibrium constants K (eqn.2) or rate constants k 
(kon = association constant, koff = dissociation constant of ligand-receptor complex formation), 
the logarithms of such values can be correlated with binding affinities.    

∆G = -2.303 RT log K = -2.303 RT log kon / koff                              (2) 

Logarithms of molar concentrations C that produce a certain biological effect can be correlated 
with molecular features or with physiological properties that are also free-energy-related 



Pharmacologyonline 1: 306-344 (2011)             Newsletter             Jhanwar et al. 

 

 
 

311

equilibrium constants; normally the logarithms of inverse concentrations, log1/C, are used to 
obtain larger values for the more active analogs. 

 
Development of Receptor Theory 
The idea that drugs interacted with specific receptors began with Langley, who studied the 
mutually antagonistic action of the alkaloids, pilocarpine and atropine. He realized that both 
these chemicals interacted with some receptive substance in the nerve endings of the gland 
cells[32]. Paul Ehrlich defined the receptor as the binding group of the protoplasmic molecule to 
which a foreign newly introduced group binds[33]. In 1905 Langley’s studies on the effects of 
curare on muscular contraction led to the first delineation of critical characteristics of a receptor: 
recognition capacity for certain ligands and an amplification component that results in a 
pharmacological response[34]. Receptors are mostly integral proteins embedded in the 
phospholipid bilayer of cell membranes. Rigorous treatment with detergents is needed to 
dissociate the proteins from the membrane, which often results in loss of integrity and activity. 
Pure proteins such as enzymes also act as drug receptors. Their relative ease of isolation and 
amplification have made enzymes desirable targets in structure based ligand design and QSAR 
studies. Nucleic acids comprise an important category of drug receptors. Nucleic acid receptors 
(aptamers), which interact with a diverse number of small organic molecules, have been isolated 
by in vitro selection techniques and studied[35].  

Recent binary complexes provide insight into the molecular recognition process in these 
biopolymers and also establish the importance of the architecture of tertiary motifs in nucleic 
acid folding[36]. Groove-binding ligands such as lexitropsins hold promise as potential drugs and 
are thus suitable subjects for focused QSAR studies[37].  

It is now possible to isolate membrane bound receptors, although it is still a challenge to 
delineate their chemistry, given that separation from the membrane usually ensures loss of 
reactivity. Nevertheless, great advances have been made in this arena, and the three-dimensional 
structures of some membrane- bound proteins have recently been elucidated. To gain an 
appreciation for mechanisms of ligand-receptor interactions, it is necessary to consider the 
intermolecular forces at play. Considering the low concentration of drugs and receptors in the 
human body, the law of mass action cannot account for the ability of a minute amount of a drug 
to elicit a pronounced pharmacological effect. The driving force for such an interaction may be 
attributed to the low energy state of the drugreceptor complex: KD = [Drug] [Receptor] / [Drug-
Receptor Complex]. Thus, the biological activity of a drug is determined by its affinity for the 
receptor, which is measured by its KD, the dissociation constant at equilibrium. A smaller KD 
implies a large concentration of the drug-receptor complex and thus a greater affinity of the drug 
for the receptor. The latter property is promoted and stabilized by mostly non-covalent 
interactions sometimes augmented by a few covalent bonds. The spontaneous formation of a 
bond between atoms results in a decrease in free energy; that is, ∆G is negative. The change in 
free energy ∆G is related to the equilibrium constant Keq. 

 
∆G° = -RT ln Keq 

 
Thus, small changes in ∆G0 can have a profound effect on equilibrium constants. 
 
Types of Intermolecular Forces 
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Bond that formed between drug-receptor interactions include covalent, ionic, hydrogen, dipole-
dipole, vander Waals, and hydrophobic interactions. Most drug-receptor interactions constitute 
a combination of the most of these bonds which are reversible under physiological conditions. 
Covalent bonds are not as important in drug-receptor binding as non-covalent interactions. 
Alkylating agents in chemotherapy tend to react and form an immonium ion, which then 
alkylates proteins, preventing their normal participation in cell divisions. Baker’s concept of 
active site directed irreversible inhibitors was well established by covalent formation of Baker’s 
antifolate and dihydrofolate reductase[38]. 

Ionic (electrostatic) interactions are formed between ions of opposite charge with 
energies that are nominal and that tend to fall off with distance. They are ubiquitous and because 
they act across long distances, they play a prominent role in the actions of ionizable drugs. The 
strength of an electrostatic force is directly dependent on the charge of each ion and inversely 
dependent on the dielectric constant of the solvent and the distance between the charges. 
Electrostatic interactions are generally restricted to polar molecules. 

Hydrogen bonds are ubiquitous in nature. Their multiple presence contributes to the 
stability of the (α-helix and base-pairing in DNA. Hydrogen bonding is based on an electrostatic 
interaction between the non-bonding electrons of a heteroatom (e.g., N, O, S) and the electron- 
deficient hydrogen atom of an -OH, SH, or NH group. Hydrogen bonds are strongly directional, 
highly dependent on the net degree of salvation, and rather weak, having energies ranging from 1 
to 10 kcal/mol[39,40]. Bonds with this type of strength are of critical importance because they are 
stable enough to provide significant binding energy but weak enough to allow for quick 
dissociation. The energy of dipole-dipole interactions can be described by Equation, 
 

E = 2µ1µ2cosθ1cos θ2/Dr3 
 
where µ is the dipole moment, θ is the angle between the two poles of the dipole, D is the 
dielectric constant of the medium and r is the distance between the charges involved in the 
dipole. 

There are also strong interactions between non-polar molecules over small intermolecular 
distances. Dispersion or London/van der Waals forces are the universal attractive forces between 
atoms that hold non-polar molecules together in the liquid phase. They are based on 
polarizability and these fluctuating dipoles or shifts in electron clouds of the atoms tend to 
induce opposite dipoles in adjacent molecules, resulting in a net overall attraction. The energy of 
this interaction decreases very rapidly in proportion to 1/r6, where r is the distance separating the 
two molecules. These vander Waals forces operate at a distance of about 0.4-0.6 nm and exert an 
attraction force of less than 0.5 kcal/mol.  

Hydrophobicity refers to the tendency of non-polar compounds to transfer from an 
aqueous phase to an organic phase[41,42]. When a non-polar molecule is placed in water, it gets 
solvated by a sweater of water molecules ordered in a ice-like manner. This increased order in 
the water molecules surrounding the solute results in a loss of entropy. Association of 
hydrocarbon molecules leads to a squeezing out of the structured water molecules. The displaced 
water becomes bulk water, less ordered, resulting in a gain in entropy, which provides the 
driving force referred to as a hydrophobic bond. 
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OBJECTIVES OF QSAR 

Mostly all the QSAR methods focus on the following goals: 

1. Quantitative relationship between the structure and physiochemical properties of substances 
and their biological activity are being used as the foundation stone in search of new medicines. 
The mathematical and statistical analysis helps us to predict the drug activity. 

2. QSAR makes it easy now to reach  the conclusion for any of the congener that still not in 
process, in way that  whether it will optimal and profitable or not. 

3. To quantitatively correlate and recapitulate the relationships between trends in chemical 
structure alterations and respective changes in biological endpoint for comprehending which 
chemical properties are most likely determinants for their biological activities. 
 
4. To optimize the existing leads so as to improve their biological activities. 
 
5. To predict the biological activities of untested and sometimes yet unavailable compounds. 

TECHNIQUES AND TOOLS OF QSAR 

1. Compound Selection: In setting up to run a QSAR analysis, compound selection is an 
important angle that needs to be addressed. One of the earliest manual methods was an approach 
devised by Craig, which involves two-dimensional plots of important physicochemical 
properties. Care is taken to select substituents from all four quadrants of the plot[43]. The Topliss 
operational scheme allows one to start with two compounds and construct a potency tree that 
grows branches as the substituent set is expanded in a stepwise fashion[44]. Topliss later proposed 
a batchwise scheme including certain substituents such as the 3,4-Cl2, 4-Cl, 4-CH3, 4-OCH3, and 
4-H analogs[45]. 
 
2. Biological Parameters: In QSAR analysis, it is vital important that the biological data be both 
accurate and precise to develop a meaningful model. The equilibrium constants and rate 
constants that are used extensively in physical organic chemistry and medicinal chemistry are 
related to free energy values ∆G. Thus for use in QSAR, standard biological equilibrium 
constants such as Ki or Km should be used in QSAR studies. Percentage activities (e.g., % 
inhibition of growth at certain concentrations) are not appropriate biological endpoints because 
of the nonlinear characteristic of dose-response relationships. These types of endpoints may be 
transformed to equieffective molar doses. Only equilibrium and rate constants pass muster in 
terms of the free-energy relationships or influence on QSAR studies. Biological data are usually 
expressed on a logarithmic scale because of the linear relationship between response and log 
dose in the midregion of the log dose-response curve. Inverse logarithms for activity (log 1/C) 
are used so that higher values are obtained for more effective analogs. Various types of 
biological data have been used in QSAR analysis. 
 
Types of Biological Data Utilized in QSAR Analysis 
    Source of Activity                   Biological Parameters 
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1. Isolated receptors 
Rate constants                                      Log k 
Michaelis-Menten                                Log 1/Km 
Constants                                  
Inhibition constants                              Log 1/Ki 
Affinity data                                         pA2; pA1 
2. Cellular systems 
Inhibition constants                             Log 1/IC50 
Cross resistance                                    Log CR 
In vitro biological data                         Log 1/C 
Mutagenicity states                              Log TA98 
3. In vivo systems 
Biocencentration factor                       Log BCF 
In vivo reaction rates                      Log I (Induction) 
Pharmacodynamic                         Log T (total clearance)       
Rates  
3. Statistical Methods: Linear Regression Analysis 
The most widely used mathematical technique in QSAR analysis is multiple regression (MRA). 
Regression analysis is a powerful means for establishing a correlation between independent 
variables and a dependent variable such as biological activity[46]. 
  Yi = b +  a Xi + Ei  
 Certain assumptions are made with regard to this procedure[47]:  
1. The independent variables, which in this case usually include the physicochemical parameters, 
are measured without error. Unfortunately, this is not always the case, although the error in these 
variables is small compared to that in the dependent variable. 
2. For any given value of X, the Y values are independent and follow a normal distribution. The 
error term Ei possesses a normal distribution with a mean of zero. 
3. The expected mean value for the variable Y, for all values of X, lies on a straight line. 
4. The variance around the regression line is constant. The best straight line for model Yi = b + a 
Zi + E is drawn through the data points, such that the sum of the squares of the vertical distances 
from the points to the line is minimized. Y represents the value of the observed data point and 
Ycalc is the predicted value on the line.  
The sum of squares SS = � ( Yobs -  Ycalc )2. 
Yobs =  a Xi + b + Ei                                                                     (1) 
Ycalc = a Xi + b                                                                            (2) 
E = Yobs -  a Xi - b                                                                        (3) 
n 
�  Ei

2  = � ∆2 = SS 
i=1  
         =  � ( Yobs - Ycalc)2                                                                                            (4) 
                   n 
Thus, SS = � (Yobs – a Xi – b)2                                                                             (5) 
                   i=1  
Expanding Equation (5), will give 
         n 
SS = � (Yobs

2 - Yobs a Xi – Yobs b – Yobs a Xi  + a2 Xi
2 + a Xi b – b Yobs + a b Xi  + b2 )               (6) 
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         i=1 
Taking the partial derivative of Equation (4) with respect to b and then with respect to a, results  
in Equations (7) and (8). 
                    
dSS  =  �(taking summation from i = 1 to n) – 2(Yobs – b – a Xi )                                 (7) 
 db        
dSS   =   � (Taking summation from i=1 to n) – 2 Xi (Yobs – b - aXi )                 (8) 
 db          
SS can be minimized with respect to b and a and divided by -2 to yield the normal Equations 
(9) and (10). 
n 
� = (Yobs – b – a Xi ) = 0                                                               (9) 
i=1 
  n 
  � =  Xi ( Yobs – b – a Xi) = 0                                          (10)                      
 i=1  

These normal equations can be rewritten as follows: 
    n         n            n 
 b � Xi + � Xi

2 =  � Xi Yobs                                                                                       (11) 
 i=1         i=1         i=1 

         n          n      
b + a � Xi  = � Yobs                                                                                                              (12) 
         i=1       i=1 

The solution of these simultaneous equations yields a and b.  
 
PARAMETERS USED IN QSAR 
 
1. Hydrophobicity Parameters: More than a hundred years ago, Meyer and Overton made their 
discovery on the correlation between oil/water partition coefficients and the narcotic potencies of 
small organic molecules[48,49]. 

 1.1 Estimation of hydrophobicity:-  

Hansch established a model to measure the lipophilicity in term of partition coefficient. Drug 
travels to the site of action that means solubility in 1- octanol that simulate the lipid membrane 
then it goes to via cytoplasm that is simulated by Aqueous buffer “water”  

Hansch proposed the lipophilicity measurement in term of partition coefficient “P” 

P = [C]octanol  / [C]water 

It is called “Distribution coefficient”. 
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With help of the partition coefficient we can determined the hydrophobic (π) like the difference 
caused in the partition coefficient of substituted and unsubstantiated compounds is relevant to the 
attached new susbtituent in it 

Formula is  

π = log Px - logPH 

Px denotes for substituted compound by “x” 

PH denotes unsubstituted “x = H”  

Eg.- Consider the log P values for benzene( logP = 2.13), chlorobenzene (logP = 2.84), and 
benzamide (logP = 0.64) , Since benzene is the parent compound, the substituents constants for 
Cl and CONH2 are 0.71 and -1.49 respectively. Having obtained these values, it is now possible 
to calculate the theortical log P value for media Chlorobenzamide. 

Π values of aromatic substituent 

Π values Substituents 

ΠORTHO ΠMETA ΠPARA 

—H 0.00 0.00 0.00 

—Cl 0.76 0.77 0.73 

—Br 0.84 0.96 1.19 

—I 0.93 1.18 1.43 

—NH2 -1.40 -1.29 -1.30 

—OH -0.41 -0.50 -0.61 

—CHO -0.43 -0.47 —0.47 

—NO2 — 0.11 0.22 

—CH3 0.84 0.52 0.60 
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—OCH3 -0.02 — -0.04 

 
 
 
1.2 Partition coefficient :- It is the ratio of concentrations of a compound in the two phases of a 
mixture of two immiscible solvents at equilibrium. 
 

 
P = Concentration of drug in organic phase

Concentration of drug in aqueous phase      

Hydrophobic compounds will have a high P value, whereas hydrophilic compounds will have a 
low P value. The hydrophobic character of a drug can be measured experimentally by testing the 
drug’s relative distribution coefficient. Octanol is a suitable solvent for the measurement of 
partition coefficients for many reasons[50,51]. It is cheap, relatively nontoxic, and chemically 
unreactive. The hydroxyl group has both hydrogen bond acceptor and hydrogen bond donor 
features capable of interacting with a large variety of polar groups. Despite its hydrophobic 
attributes, it is able to dissolve many more organic compounds than can alkanes, cycloalkanes, or 
aromatic hydrocarbons. It is UV transparent over a large range and has a vapour pressure low 
enough to allow for reproducible measurements. Varying substituents on the lead compound will 
produce a series of analogues having different hydrophobicities and therefore different P 
values.Various substituents make to hydrophobicity. This contribution is known as the 
substituent hydrophobicity constant. These π value are characteristic for the substituents and can 
be used to calculate how the partition coefficient of a drug would be affected by adding these 
substituents. QSAR would allow us to predict the most promising and satisfying structures 
(closest to the optimum value log Po ).The substituent hydrophobicity constant is a measure of 
how hydrophobic a substituent is, relative to hydrogen. A positive value of π indicates that the 
substituent is more hydrophobic then hydrogen. A negative value indicates that the substituent is 
less hydrophobic. 

By plotting these P value against the biological activity of these drugs. It is possible to see if 
there is any relationship between the two properties. The biological activity is normally 
expressed as 1/C so a graph is drawn by plotting log 1/C versus log P values to correlate the 
activity and partition coefficient or hydrophobicity. In studies where the range of the log P values 
are ranges between 1 to 4 and a straight-line graph is obtained i.e. there is an existence of relation 
between hydrophobicity and biological activity.  
As per the equation is 
log (1/C)  = K1 log P + K2 

Eg. Binding of drug to serum albumin. It can be determined by their hydrophobicity, in study of 

40 compounds they resulted in the following equation: 
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log (1/C) = 0.75log P + 2.30 

 

 

Conclusions 

(i) Serum albumin binding increases as log P increases that mean hydrophobic drugs bind more 

strongly to serum albumin than hydrophilic drug.  

(ii) It helps us to know how strongly a drug binds to serum albumin that can be important in 

estimating effective dose levels for that drug and drugs of similar structure and predict  

 Some time log P Values increases over the given ranges results in decreased activity  

But drugs which are independent of cell target action like Eg.- General Anaesthetics. These 

are related to the log P factor alone to operate in cell membrane only no receptor interaction. 

These function by entering the central nervous system (CNS) and ‘dissolving’ into cell 

membranes where they affect membrane structure and nerve function.  

Conclusion:-  

(i) Anaesthetic activity increases with increasing hydrophobicity  

(ii) they depend upon lipophilicity only  

(iii) There is an optimum value for log P (log P0), beyond which increasing hydrophobicity 

causes a decrease in anaesthetic activity. 

Finally, hydrophobic drugs are often more susceptible to metabolism and subsequent 

elimination. Lipophilicity has a relationship with concentration and indirectly with biological 

activity .It can be concluded by this graph  



Pharmacologyonline 1: 306-344 (2011)             Newsletter             Jhanwar et al. 

 

 
 

319

 

[Transition of linear equational effect of “log P” into parabolic equational effect “log P2”] 

The value of log P at the maximum (log P0) represents the optimum partition coefficient for 

biological activity. Beyond that point, an increase in log P results in a decrease in biological 

activity. 

(A)SHAKE-FLASK METHOD 

The shake-flask method, so-called, is most commonly used to measure partition coeffcients with 
great accuracy and precision and with a log P range that extends from -3 to +6[52, 53]. The 
procedure calls for the use of pure, distilled, deionized water, high-purity octanol, and pure 
solutes. At least three concentration levels of solute should be analyzed and the volumes of 
octanol and water should be varied according to a rough estimate of the log P value. The 
classical and most reliable method of log P determination is the, which consists of dissolving 
some of the solute in a volume of octanol and water, then measuring the concentration of the 
solute in each solvent.  
 

 

Advantages: 

1. Most accurate method 

2. Accurate for broadest range of solutes (neutral and charged compounds applicable) 

3. Chemical structure does not have to be known beforehand. 
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Disadvantages: 

1. Time consuming (>30 minutes per sample) 

2. Octanol and water must be premixed and equilibrated (takes at least 24 hours to equilibrate) 

3. Complete solubility must be attained, and it can be difficult to detect small amounts of 
undissolved material. 

4. The concentration vs. UV-VIS response must be linear over the solute's concentration range. 

5. If the compound is extremely lipophilic or hydrophilic, the concentration in one of the phases 
will be exceedingly small, and thus difficult to quantify. 

6. Relative to chromatographic methods, large amounts of material are required. 

(B) By Chromatography 
Chromatography provides an alternate tool for the estimation of hydrophobicity parameters. Rm 
values derived from thin-layer chromatography provide a simple, rapid, and easy way to 
ascertain approximate values of hydrophobicity[54, 55]. 
 Rm = log ( 1/ Rf – 1) 
Recently, a rapid method for the determination of partition coefficients using gradient reversed 
phase/high pressure liquid chromatography (RP-HPLC) was developed. A faster method of log P 
determination makes use of high-performance liquid chromatography. The log P of a solute can 
be determined by correlating its retention time with similar compounds with known log P values. 
This method is touted as a high-throughput hydrophobicity screen for combinatorial libraries[56, 

57]. A chromatography hydrophobicity index (CHI) was established for a diverse set of 
compounds. Acetonitrile was used as the modifier and 50mm ammonium acetate as the mobile 
phase[56]. A linear relationship was established between Clog P and CHIN for neutral molecules. 

Clog P = 0.057 CHIN - 1.107  
n = 52, r2 = 0.724, s = 0.82, F = 131 
Advantage: 

Fast method of determination (5-20 minutes per sample) 

Disadvantages: 

1. The solute's chemical structure must be known. 

2. Since the value of log P is determined by linear regression, several compounds with similar 
structures must have known log P values. 
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3. Different chemical classes will have different correlation coefficients, between-class 
comparisons are not significant. 

 (C) Fragmentation Methods and interaction factors (Computational) 

Initially, the p-system was applied only to substitution on aromatic rings and when the hydrogen 
being replaced was of innocuous character. It was apparent from the beginning that not all 
hydrogens on aromatic systems could be substituted without correction factors because of strong 
electronic interactions. It became necessary to determine π values in various electron-rich and –
deficient systems (e.g., X-phenols and X-nitrobenzenes). Correction factors were introduced for 
special features such as unsaturation, branching, and ring fusion. The proliferation of p-scales 
made it difficult to ascertain which system was more appropriate for usage, particularly 
with complex structures. The shortcomings of this approach provided the impetus for Nys and 
Rekker to design the fragmental method, a reductionist approach, which was based on the 
statistical analysis of a large number of measured partition coefficients and the subsequent 
assignment of appropriate values for particular molecular fragments[58, 59]. Hansch and Leo 
took a constructionist approach and developed a fragmental system that included correction 
factors for bonds and proximity effects[60]. Labor-intensive efforts and inconsistency 
in manual calculations were eliminated with the debut of the automated system CLOGP and its 
powerful SMILES notation [61-62].  
Recent attempts to compute log P calculations have resulted in the development of 
solvatochromic parameters[63,64]. This approach was proposed by Kamlet et al. and focused on 
molecular properties. In its simplest form it can be expressed as follows: 
Log Poct = a V + b π* + c β H + d α H + e 
V is a solute volume term; π* represents the solute polarizability; βH and αH are measures 
of hydrogen bond acceptor strength and hydrogen bond donor strength, respectively; 
and e is the intercept. 
 
2. Electronic factors :- The extent to which a given reaction responds to electronic perturbation 
constitutes a measure of the electronic demands of that reaction, which is determined by its 
mechanism. The introduction of substituent groups into the framework and the subsequent 
alteration of reaction rates helps delineate the overall mechanism of reaction. Early work 
examining the electronic role of substituents on rate constants was first tackled by Burckhardt 
and firmly established by Hammett[8,65,66,67]. Hammett employed, as a model reaction, them 
ionization in water of substituted benzoic acids and determined their equilibrium constants Ka.  

COOH

X

+ H2O
Ka

COO-

X

+ H3O+

 
Figure-Ionization of Benzoic acid 



Pharmacologyonline 1: 306-344 (2011)             Newsletter             Jhanwar et al. 

 

 
 

322

This led to an operational definition of σ, the Hammett substitution constant. It is a measure of 
the size of the electronic effect i.e. whether a electron withdrawing or electron donating for a 
given substituent and represents a measure of electronic charge distribution in the benzene 
nucleus. 
σX =  log KX - log KH    or  log( KX /KH ) = - pKX + pKH 
If the substituent X is an electron donating group (I+) 

Then the aromatic ring is less able to stabilize the carboxylate ion. 

 The equilibrium shifts to the left and a weaker acid is obtained with a smaller KX value.  

Substituents such as Methyl, Ethyl and t-Butyl have negative σ values. 

If the substituent X is an electron withdrawing  group (I-) 

Smaller KX values than benzoic acid itself and hence the value of σX for an electron withdrawing  

substituent will be positive.  

Then the aromatic ring is able to stabilize the carboxylate ion. 

The electronic effects of various substituent will clearly have an effect on a drug’s ionization or 
polarity. This in turn may have an effect on how easily a drug can pass through cell membranes 
or how strongly it can bind to a receptor. It is therefore useful to have some measure of the 
electronic effect a substituent can have on a molecule.  
Hammett also drew attention to the fact that a plot of log KA for benzoic acids versus log k for 
ester hydrolysis of a series of molecules is linear, which suggests that substituents exert a similar 
effect in dissimilar reactions. 

log kX   α log KX  =  ρ . σ        
      kH           KH 
KH = Dissociation constant of unsubstituted Benzoic acid.  

log (kX / kH) refers to comparing rates of reaction to the rate. 

KH = Ionization constant unsubstituted benzoic acid. 
As far as substituents on an aromatic ring are concerned, the measure used is known as the     
Hammett substitution constant (σ). ρ (rho) is defined as a proportionality or reaction constant, 
which is a measure of the susceptibility of a reaction to substituent effects. A positive rho value 
suggests that a reaction is aided by electron withdrawal from the reaction site, whereas a negative 
rho value implies that the reaction is assisted by electron donation at the reaction site.  
When a substituent is present on the aromatic ring. This equilibrium is affected. Electron 

withdrawing groups, such as a nitro group, result in the aromatic ring having a stronger electron 

withdrawing and stabilizing influence on the carboxylate anion. The equilibrium will therefore 
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shift more to the ionized form such that the substituted benzoic acid is a stronger acid and has 

larger KX value (X represents the substituent on the aromatic ring) 

 

Case--The Hammett substituent constant for H is zero. 

Eg, the nitro substituent has σp = 0.78 and σm = 0.71. In the meta position, the electron 

withdrawing power is due to the inducting influence of the substituent, whereas at the para 

position inducting and resonance effects both play a part, and so the σp value is greater.  

 

A nitro group in the meta position(σm)--K increases—because nitro group is electron-

withdrawing, thereby stabilizing the negative charge that develops. Force working is the 

Inducting effect (I) 

 

a nitro group in the para position (σp) 

 

K--larger than for the nitro group in the meta position 



Pharmacologyonline 1: 306-344 (2011)             Newsletter             Jhanwar et al. 

 

 
 

324

indicating even greater electron-withdrawal because  in case of para position inducting and 

resonance effects both play a part , whereas at the para position Inducting and Resonance 

effects(R) both take  part .  

The Hammett  equation  relates reaction rates and equilibrium constants that  are described as  

1. Positive σ:-  If σ is positive, the substituent is electron attracting, that means it takes out 

the electrons from the ring . It favours the anion and shifts the equilibrium to right side. 

Ultimately results in increased K values.they couse the increment in values like 

log(K/K0) is positive and  K/K0   will be greater than 1  

Eg. Nitro, cyano ,chlorides  carboxy etc. 

2. Negative σ:- if σ is negative the substituent is electron donating, that means it gives out 

its own electron to the species. It favours the cationic one  and neutral species. It increase 

the electron density on ring and shifts the equilibrium to left. Ultimately results in 

decresed  K values like  K/K0   will be less than 1 and log  log(K/K0 ) will be  negative. 

Eg. Hydroxyl, alkyl groups, methoxy, ethoxy etc. 

 

These equation,  log kX   α log KX  =  ρ . σ        
                               kH           KH 

 

 

Substituents 

(σm) (σp) 

—H ( hydrogen ) 0.0 0.0 

—NO2 (nitro) 0.71 0.78 

—Cl (chloride) 0.37 0.23 

—OCH3 (methoxy) 0.12 0.27 

—OH (hydroxyl) 0.12 0.37 
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has become known as the Hammett equation and has been applied to thousands of reactions 
that take place at or near the benzene ring bearing substituents at the meta and para positions. 
Because of proximity and steric effects, ortho-substituted molecules do not always follow this 
maxim and are subject to different parameterizations. Thus, an expanded approach was 
established by Charton[68] and Fujita and Nishioka[69]. Charton partitioned the ortho electronic 
effect into its inductive, resonance, and steric contributions; the factors α ,β , and X are 
susceptibility or reaction constants and h is the intercept. 
Log k = α σ1 + β σR + X rv + h 

Fujita and Nishioka used an integrated approach to deal with ortho substituents in data sets 
including meta and para substituents. 
Log k = ρσ + δ ES

ortho + f Fotho + C 
For ortho substituents, para sigma values were used in addition to Taft’s ES values and 
Swain-Lupton field constants Fortho. The reason for employing alternative treatments to ortho-
substituted aromatic molecules is that changes in rate or ionization constants mediated by meta 
or para substituents are mostly changes in ∆Ho because substitution does not affect ∆So. Ortho 
substituents affect both enthalpy and entropy; the effect on entropy is noteworthy because 
entropy is highly sensitive to changes in the size of reagents and substituents as well as 
degree of solvation. 
 

3. Steric parameters 

Quantifying steric properties is more difficult than quantifying hydrophobic or electronic 
properties. sterics are of overwhelming importance in ligand- receptor interactions as well as in 
transport phenomena in cellular systems. The first steric parameter to be quantified and used in 
QSAR studies was Taft’s ES constant[70]. ES is defined as 
ES = log ( kX / kH )A  

ES is called Taft’s steric factor. 

Where  kX and kH represent the rates of acid hydrolysis of esters, XCH2COOR and CH3COOR, 
respectively. 
It is highly unlikely that a drug’s biological activity will be affected by steric factors alone, but 
these factors are frequently to be found in Hansch equations. 

Steric effect on the  substituent can be describe by the following example  

Eg. Ester hydrolysis 

X C
H2

C

O

OMe

Hydrolysis
X C

H2

C

O

OH

+ HOMe

 



Pharmacologyonline 1: 306-344 (2011)             Newsletter             Jhanwar et al. 

 

 
 

326

[Under acidic conditions where only steric factors are important.] 

Bulky substituent may shield the ester from attack and lower the rate of hydrolysis. It is therefore 

necessary to separate out these two effects. This can be done by measuring hydrolysis rates under 

basic conditions and also under acidic conditions.  

To correct for hyperconjugation in the a-hydrogens of the acetate moiety, Hancock devised a 
correction on ES such that 
ES

C = ES + 0.306 (n- 3) 
In this equation, n represents the number of α-hydrogens and 0.306 is a constant derived from 
molecular orbital calculations[71]. Unfortunately, the limited availability of ES and ES

C values for 
a great number of substituents precludes their usage in QSAR studies. Charton demonstrated a 
strong correlation between ES and vander Waals radii, which led to his development of the 
upsilon parameter vX

[72]. 
vX =  rX - rH = rX - 1.20 
where rX and rH are the minimum vander Waals radii of the substituent and hydrogen, 
respectively. 
 
One of the most widely used steric parameters is molar refraction (MR), which has been aptly 
described as a chameleon parameter by Tute[73]. However, the number of substituents which can 
be studied by this method is restricted. Although it is generally considered to be a crude measure 
of overall bulk, it does incorporate a polarizability component that may describe cohesion and is 
related to London dispersion forces as follows: MR =  4πNα/3, where N is Avogadro’s number 
and α is the polarizability of the molecule. It contains no information 
on shape.  
MR is also defined by the Lorentz-Lorenz equation: 
 
The MR is obtained from the following equation:  

MR =
n2 - 1
n2 + 2

× MW
d  

MR is generally scaled by 0.1 and used in biological QSAR, where intermolecular effects are of 
primary importance. Where n is the refractive index, MW is the molecular weight, and d is the 
density. The term MW/d defines a volume, while the (n2 – 1) / (n2 + 2) term provides a 
correction factor by determining how easily the substituent can be polarized. This is particularly 
significant if the substituent has π electrons or lone pairs of electrons. 
The failure of the MR descriptor to adequately address three-dimensional shape issues led to 
Verloop’s development of STERIMOL parameters[74], which define the steric constraints of a 
given substituent along several fixed axes. Five parameters were deemed necessary to define 
shape: L, B1, B2, B3, and B4. L represents the length of a substituent along the axis of a bond 
between the parent molecule and the substituent; B1 to B4 represent four different width 
parameters. However, the high degree of collinearity between B1, B2, and B3 and the large 
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number of training set members needed to establish the statistical validity of this group of 
parameters led to their demise in QSAR studies. Verloop subsequently established the adequacy 
of just three parameters for QSAR analysis: a slightly modified length L, a minimum width B1, 
and a maximum width B5 that is orthogonal to L[75]. The use of these insightful parameters have 
done much to enhance correlations with biological activities. Recent analysis in our 
laboratory has established that in many cases, B1 alone is superior to Taft’s ES and a 
combination of B1 and B5 can adequately replace ES

[76]. 
 
Eg.- Verloop steric parameters for a carboxylic acid group  

Fi

g- [L is the length of the substituent while B1 – B4 are the radii of the group.  

QSAR METHOD: The QSAR method involves recognition that a molecule (organic, 

peptide, protein, etc.) is really a three-dimensional distribution of properties. The most important 

of these properties are steric (eg shape and volume ), electronic (eg electric charge and 

electrostatic potential) and lipophilic properties( how polar or non-polar the sections of 

molecular are, usually exemplified by the log of the octanol-water partition coefficient, log P). 

Scientists are used to visualizing mainly steric properties of molecules. However, molecules look 

different when viewed in electrostatic or lipophilic space. 
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Figure: A small organic molecule (glucopyranose) viewed in steric (left), 

electrostatic (centre) and lipophilic (right) space 

The QSAR method (and analogously QSTR And QSPR) involves a number of key steps: 

1. Converting molecular structures into mathematical descriptors that encapsulate the key 

properties of the molecules relevant to the activity or property being modelled.  

2. Selecting the best descriptors from a larger set of accessible, relevant descriptors. 

3. Mapping the molecular descriptors into the properties, preferably using a model-free mapping 

system in which no assumptions are needed as to the functional form of the structure–activity 

relationship. These relationships are often complex, unknown and non-linear. 

4. Validating the model to determine how predictive it is, and how well it will generalise to new 

molecules not in the date set used to generate the model (the training set). 

The relationship between molecular structure and some biological response, BR (eg IC50, LD50, 

ED90) can be expressed as:[16] 

log (BR) = f ( x1, x2, …. , xN ) 

where f is usually an unknown complex, non-linear function, and x1, … , xN are molecular 

descriptors. Building of a QSAR model via the four steps outlined above involves finding the 

best form of function f.  
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VARIOUS DESCRIPTORS USED IN QSAR 

MOLECULAR DESCRIPTORS: Molecular descriptors are numerical values that characterize 
properties of molecules.Molecular descriptors encoded structural features of molecules as 
numerical descriptors. Vary in complexity of encoded information and in compute time. These 
are truly structural descriptors because they are based only on the two-dimensional 
representation of a chemical structure.  
Molecular descriptors can be of diverse types. It is categorized into fragment descriptors, 
involving properties of sections of molecules, and whole molecule descriptors, based on the 
properties of the intact molecule. 

FRAGMENT DESCRIPTORS: The very earliest descriptors used in QSAR were of this type. 
QSAR was performed using substituent constants such as hydrophobic constants π, molar 
refractivity MR, Hammett constants σ and several other, less well-known constants. The recent 
explosion in the number of molecular descriptors is partly due to the ease by which they may be 
generated by computational methods, such as molecular orbital calculations[77-79]. There has also 
been a focus on developing fragment descriptors that are very computationally efficient. The 
reason is that rapid searching for leads in large chemical libraries (databases of real chemical 
compounds) or virtual libraries (databases of chemically reasonable molecules that have not yet 
been synthesized ) require efficient information-rich descriptors. Surprisingly simple descriptors 
can yield useful models. For example, molecules may be represented simply by counting the 
numbers of atoms of specific elemental type, with specific numbers of connections (a measure of 
atomic hybridization). A current trend is to employ fragment descriptors based on important 
molecular properties such as hydrophobes (eg. Aromatic rings), hydrogen bond donors (eg 
amines), hydrogen bond acceptors (eg carbonyls), positive charges (eg NH4

+) and negative 
charges (eg PO3

-). The rationale for this was first described by Andrews and coworkers.[80] Other 
fingerprint and general fragment based methods such as molecular holograms[81,82] generalise this 
approach of breaking molecules into fragments. Another important class of fragment-based 
descriptors, the van der walla surface area descriptors (VSA), have been reported by Labute to 
have attributes that make them a widely applicable QSAR descriptors.[83] VSA descriptors are 
derived by adding together the van der walls surface area contributions of atoms exhibiting a 
given property (chosen from steric, electrostatic and lipophilic properties) within a given binned 
property range. Linear combinations of VSA descriptors correlate well with most commonly 
used descriptors. Fragment- based descriptors have advantages of being computationally 
efficient and independent of molecular confirmation or 3D structure.  

Whole molecule descriptors: They typically capture information on molecular size and 
lipophilicity through properties such as the molecular weight or molecular volume and log of the 
octanol-water partition coefficient (logP). The relationship between log P and some biological 
responses was often inverse parabolic, in which a maximum in the biological response occurred 
at some optimum log P value. The explanation for this relationship was that it described the 
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partitioning of drug molecules into biological membranes. An important class of whole molecule 
descriptors are the topological descriptors.[84-88] These involve treating molecules as topological 
objects where atoms become the vertices, and bonds the edges, of a molecular graph. 

 

Figure shows the conversion of a molecular structure into a molecular graph. Three- dimensional 
structure(left), two-dimensional, hydrogen suppressed structure(centre) and hydrogen- 
suppressed molecular graph(right). 

Topological indices are 2D descriptors based on graph theory concepts. These indices have been 
widely used in QSAR studies. They help to differentiate the molecules according mostly to their 
size, degree of branching, flexibility, and overall shape. The most widely known descriptors are 
those that were originally proposed by Randic[89] and extensively developed by Kier and Hall[90]. 
The strength of this approach is that the required information is embedded in the hydrogen- 
suppressed framework and thus no experimental measurements are needed to define molecular 
connectivity indices. For each bond the Ck term is calculated. The summation of these terms then 
leads to the derivation of X, the molecular connectivity index for the molecule. 
Ck = (δi δj )-0.5 where  δ = σ - h 
δ is the count of formally bonded carbons and h is the number of bonds to hydrogen atoms. To 
correct for differences in valence, Kier and Hall proposed a valence delta (δv) term to calculate 
valence connectivity indices[91]. Molecular connectivity indices have been shown to be closely 
related to many physicochemical parameters such as boiling points, melting points, dipole 
moment, solubility, molar refraction, polarizability, and partition coefficients[92,93]. 
Recently, descriptors derived from eigenvalues of molecular matrices derived from graphs have 
shown promise in generating descriptors useful for QSAR[94-96] and for molecular diversity 
purposes (eg characterization of chemical libraries and databases, and for design of optimally 
diverse combinatorial libraries. Modified adjacency matrices describe how atoms in a molecule 
are connected. They provide a means of combining the molecular properties with topological 
information encoding the way a molecule is connected. 
Figure below is showing an example of a modified adjacency matrix. Diagonalisation of these 
matrices provide eigenvalue descriptors. A modification of this eigenvalue approach has been 
particularly useful in the description of molecular diversity (dissimilarity between molecules). 
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0 1 0 0 0 1 0 0 0 0
1 0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0
1 0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 1 1 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0

1

2
3

4

5
6

7
9

8
10

 
Conversion of molecule into an adjacency matrix. Off-diagonal elements are 1 if the two atoms 
are bonded, 0 if not. 

Brief description of some descriptors are[97]: 

1. Constitutional Descriptor: Molecular weight, no. of atoms, no. of non-H atoms, no. of 
bonds, no. of heteroatoms, no. of multiple bonds (nBM), no. of aromatic bonds, no. of functional 
groups (hydroxyl, amine, aldehyde, carbonyl, nitro, nitroso, etc.), no. of rings, no. of circuits, no 
of H-bond donors, no of H-bond acceptors, no. of Nitrogen atoms (nN), chemical composition, 
sum of Kier-Hall electrotopological states (Ss), mean atomic polarizability (Mp), number of 
rotable bonds (RBN), mean atomic Sanderson electronegativity (Me), etc. Total number of atoms 
in the molecule. Numbers of atoms of certain chemical identity (C, H, O, N, F, etc.) in the 
molecule. Numbers of certain chemical groups and functionalities in the molecule. Total number 
of bonds in the molecule. Numbers of single, double, triple, aromatic or other bonds in the 
molecule. Number of rings, number of rings divided by the total number of atoms. Number of 6 
membered aromatic rings. Molecular weight and average atomic weight. 
2. Geometrical Descriptor: Descriptors using the atomic coordinates (x,y,z) of a molecules are 
therefore called 3D descriptors. Examples: vander Waals volume, molecular surface, polar 
surface, etc As a consequence they usually depend on the conformation. 3D petijean shape index 
(PJI3), Gravitational index, Balaban index, Wiener index, etc. 

 
 
3. Quantum Mechanical Descriptor: Highest occupied Molecular Orbital Energy (HOMO) , 
Lowest Unoccupied Molecular Orbital Energy (LUMO), Most positive charge (MPC), Least 
negative charge (LNC), Sum of squares of charges (SSC), Sum of square of positive charges 
(SSPC), Sum of square of negative charges (SSNC), Sum of positive charges (SUMPC), Sum of 
negative charges (SUMNC), Sum of absolute of charges (SAC), Total dipole moment (DMt), 
Molecular dipole moment at X-direction (DMX), Molecular dipole moment at Y-direction 
(DMY), Molecular dipole moment at Z direction (DMZ), Electronegativity (χ= -0.5 (HOMO-
LUMO)), Electrophilicity (ω= χ2/2 η), Hardness (η = 0.5 (HOMO+ LUMO)), Softness (S=1/ η). 
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4. Functional Group Descriptor: Number of total tertiary carbons (nCt), Number of H-bond 
acceptor atoms (nHAcc), number of total hydroxyl groups (nOH), number of unsubstituted 
aromatic C(nCaH), number of ethers (aromatic) (nRORPh), etc. 

 

5. Chemical Descriptor: LogP (Octanol-water partition coefficient), Hydration Energy (HE), 
Polarizability (Pol), Molar refractivity (MR), Molecular volume (V), Molecular surface area 
(SA). 
6. Substituent Electronic Descriptors: RMSQ (Root mean square error of charges), SPQ ( Sum 
of positive charges), SNQ ( Sum of negative charges), RMSDM (Root mean square of dipole 
moments at any Cartesian coordinate direction), TDM (Total dipole moment), FRMS (Root 
mean square force that any atom in constituent molecule see right before the optimization), 
FMAX (Maximum force on molecule), HOMO (Highest occupied molecular orbital), LUMO 
(Lowest unoccupied molecular orbital), HD (Hardness), SOF (Softness), EPH (Electrophilicity), 
EN (Electronegativity). 
 
 
DESCRIPTOR SELECTION: To build a good QSAR model, a minimal set of 
information-rich descriptors is required. The large number of possible indices creates several 
problems for the modeller.[98,99] 

1. Many descriptors do not contain molecular information relevant to the problem. 

2. Many descriptors are linearly dependent (contain essentially the same information). 

3. Use of poor descriptors in QSAR yields poor and misleading models. 

4. Including too many descriptors in the model, even if they contain relevant information, can 
result in overfitting of the model, and loss of ability of the model to generalize to unseen 
molecules. 

5. Many methods of screening this large pool of potential descriptors for relevant ones can lead 
to chance correlations (correlations that arise by chance because so many descriptors have been 
tried in models). In other words, if a large number of random numbers are generated as potential 
descriptors (which clearly do not contain any useful molecular information), and various subsets 
of these are used to build models, apparently significant models can arise by chance. 

The earliest method of variable selection used stepwise regression. This was integrated with the 
model-building process and involved stepwise addition (or backwards elimination) of descriptors 
according to a statistical test, to find the best model. Another widely used variable reduction 
method is principal components analysis (PCA). This involves creating a smaller set of new 
orthogonal descriptors from linear combinations of the original descriptors and using these to 
generate QSAR models.  
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METHODS USED IN QSAR ANALYSIS: 

Linear free energy related method[100]: Description of the molecular structure, electronic 
orbital distribution, reactivity, reaction rates and the role of structural and steric components and 
substituents of chemical compounds have been the subject of mathematical formulation by 
physical-organic chemistry for half a century. The most promising approach to the quantification 
of the interaction of drug molecules with biological systems involved the application of 
established thermodynamic principles. It is known as the linear free energy (LFE) or extra-
thermodynamic method which assumes an additive effect of various substituents in electronic, 
steric, hydrophobic and dispersion data in the non-covalent interactions of a drug and 
biomacromolecules. This method is expressed as follows: 

∆ log 1/C = f (∆L/∆H, ∆E, ∆Es) 

Depending upon the circumstances, this equation can be modified as 

log 1/C = b π + a 

              =  c p Ka + a 

              =  d Es + a 

             =  bπ + c p Ka + a 

            = b π + d Es + a 

            = b π + c p Ka +d Es + a                    (equation 1) 

Hence the variance in the biological activity (∆BA) is explained by the variance of linear free 
energy related substituent constants which describe the variance in lipophilic/hydrophilic 
(∆L/∆H), electronic (∆E), steric (∆Es) or other properties of the parent molecule induced by the 
subsituents.  

Two important models included in LFER method are: 

(1) HANSCH ANALYSIS 

Introduction:-  

Corwin Hansch[101] said  “Similar compounds behave similarly”  Corwin Hansch ( born 
October 6, 1918, Kenmare, North Dakota) is Professor of Chemistry at Pomona College in 
California. Hansch taught Organic Chemistry for many years at Pomona College . His course in 
Physical Bio-Organic Medicinal Chemistry was ground-breaking at an undergraduate level. 
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Hansch may be best known as the father of the concept of Quantitative Structure-Activity 
Relationship (Q.S.A.R.), the quantitative correlation of the physicochemical properties of 
molecules with their biological activities. 

He is also noted for the Hansch equation, which is used in 

(1) Multivariate Statistics - Multivariate statistics is a set of statistical tools to analyse data (e.g., 
chemical and biological) matrices using regression and/or pattern recognition techniques.  

(2) Hansch Analysis - Hansch analysis is the investigation of the quantitative relationship 
between the biological activity of a series of compounds and their physicochemical substituent or 
global parameters representing hydrophobic, electronic, steric and other effects using multiple 
regression correlation methodology.  

(3) Hansch-Fujita π constant - The Hansch-Fujita π constant describes the contribution of a 
substituent to the lipophilicity of a compound.  

Hansch proposed the action of a drug as depending on two processes. Firstly the movement of 
drug from the point of entry in the body to the site of action and secondly the interaction with the 
receptor site. Hansch suggested the linear and non-linear dependence of biological activity on 
difference parameters. 

Importance of Lipophilicty:- Hansch visualized that diffusion into cell is slow process so as it 
is also important one to determine .It is highly dependent on molecular structure of the drug. 

Drug must pass out two barriers to put  out their effect at site of action ,lipophilliic barrier(cell 
membrane) and aqueous barrier(cytoplasm) as we know that cytoplasm is made of fatty acids 
and membrane is made of glycolipids and phospholipids, they have two ends - 

(i)Lipophilicity or Hydrophobic—steroids and hydrocarbons 

 (ii)Hydrophillic end— hydroxyl group in cholesterol, sugar in glycolipids ammonia moiety in 
phospholipids 

The cell is in lipid bilayer structure  it is generally found that increasing the lipophilicity of a lead 
compound results in an increase in biological activity. This means fact that drugs have to cross 
hydrophobic barriers such as cell membranes to reach their target. But in vitro studies there is no  
such barriers have  to be crossed  and interact with a target system such as an enzyme or receptor 
where the binding site is usually hydrophobic. Therefore, increasing hydrophobicity must give 
positive results but it is not like we hope because  highly hydrophobic means poorly soluble in 
the aqueous phase,Alternatively, it may got  ‘trapped’ in fat depots and unable to reach the target 
site. 
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Conclusion-The drug must have a balance between hydrophilic and lipophilic properties to cross 
these barriers, that cell structure or target site approach make lipophilicity a crucial factor.  

4.4 Assumptions in Hansch analysis:- 

i. Conformational changes takes place in target site can be ignored 

ii. Metabolism doesn’t interferes in it  

iii. Linear free energy terms are relevant to receptor’s affinity and additive in nature 

iv. Relationship between potency and lipophilicity is linear or parabolic 

v. Hansch proposed the action of a drug as depending on two processes. Firstly the movement of 
drug from the point of entry in the body to the site of action and secondly the interaction with the 
receptor site. Hansch suggested the linear and non-linear dependence of biological activity on 
difference parameters. 

Linear Hansch model:  

The correlation of biological activity with physicochemical properties is often termed an 
Extrathermodynamic  relationship. Because it follows in the line of Hammett and Taft equations 
that correlate thermodynamic and related parameters, it is appropriately labeled. The Hammett 
equation represents relationships between the logarithms of rate or equilibrium constants and 
substituent constants. The linearity of many of these relationships led to their designation as 
linear free energy relationships. The Hansch approach represents an extension of the Hammett 
equation from physical organic systems to a biological milieu. It should be noted that the 
simplicity of the approach belies the tremendous complexity of the intermolecular interactions at 
play in the overall biological response. 

Interestingly, the concurrent considerations of π and σ (Hammett’s constant) has evolved gainful 
vital correlations existing between the biological activities of quite a few drug substances with 
their corresponding physical properties and chemical structures. 

Therefore, Hansch’s correlations piece together valuable informations of a newly designed ‘drug 
molecule’ in a more plausible, predictive and quantifiable manner than before and apply it to a 
biological system more logistically and judiciously. This particular concept and idea was further 
substantiated and expanded by assuming that all the three substituents viz., π, σ and Es, exert a 
significant effect on the efficacy  and hence the potency of a ‘drug substance’; and are found to 
be additive in nature independently. Therefore, it has given rise to the underlying linear Hansch 
equation also called extrathermodynamic approach. 

log 1/C   =  a  log P + b σ + c ES + d                    (Equation 2) 

Where, C = Concentrations of drug producing the biological response being measured,  

Log P = Substituent constant for solubility (i.e., π), 
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ES = Taft constant (for steric effects), 

σ = Hammett substitution constant 

a, b, d = Constants of the system (which are determined by computer to obtain the ‘best fitting 
line’). 

It is pertinent to state at this juncture that not all the parameters shall necessarily be significant. 

Nonlinear Hansch models 

Later on experiences results that   

(i) Increase in log P value from log Po does not linearly cause increase in biological activity some 
time its decreases.  

(ii) If P values spread over a large range.  

Thus, Hansch et al suggested that the compounds could be involved in a random-walk process: 
low hydrophobic molecules had a tendency to remain in the first aqueous compartment, whereas 
highly hydrophobic analogs sequestered in the first lipoidal phase that they encountered. This led 
to the formulation of a parabolic equation, relating biological activity and hydrophobicity[102]. 

log 1/C = -a ( log P)2 + b. log P+ constant (k)                         (equation 3) 

In the random-walk process, the compounds partition in and out of various compartments and 
interact with myriad biological components in the process. To deal with this conundrum, Hansch 
proposed a general, comprehensive equation for QSAR[103]. 
 
log 1/C = -a ( log P)2 + b. log P + ρ σ + δ ES + k    (equation 4) 
 
Where, P = n-octanol/ water partition coefficient, σ = Hammett electronic parameter, a,b,c = 
regression coefficients, ES = taft’s steric factor, k = constant term, ρ (rho) and δ are 
Proportionality constant designating the sensitivity of the reaction to electron density. 
 
The optimum value of log P for a given system is log Po and it is highly influenced by the 
number of hydrophobic barriers a drug encounters in its walk to its site of action.                    

The coefficients (a, b, c, d, e) are determined by multi-regression analysis. 
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Graph- When P is small, the (log P)2 term is very small and the equation is dominated by the log 
P term. This represents the first part of the graph where activity increases with increasing P. 
When P is large,  the (log P)2 term is more significant and eventually ‘overwhelms’ the log P 
term. This represents the last part of the graph where activity drops with increasing P 

Because of importance of electronic factors, steric effect and shape of molecules for receptor 
interaction, electric factor (σ) steric factor (Es) and topography terms (S) added to equation:- 

If Linear, log 1/C   =  a  log P + b σ + c ES + d                     

If Parabolic, log 1/C = -a ( log P)2 + b. log P + c σ + d ES + k     

Equation 4, was developed from the concept that the transport of a drug from the site of 
application to its site of action depends in a nonlinear manner on the lipophilicity of the drug, 
and that the binding affinity to its biological counterpart, such as an enzyme or a receptor, 
depends on the lipophilicity, the electronic properties and other linear free-energy-related  
properties. Equation 4, combines the description of both processes in one mathematical model. In 
addition to the introduction of a parabolic term for the nonlinear lipophilicity dependence and the 
combination of different physicochemical properties in one equation, Hansch and Fujita defined 
lipophilicity parameters π of substituents ‘X’(Eqn. 5), in the same manner as Hammett had 
defined the electronic parameter σ (Eqn. 6). The partition coefficient P in equation 5 is an 
equilibrium constant, similar to the dissociation or reaction constants K in Eqn. 6. The absence of 
a ‘reaction term’ π in Eqn. 5 is explained by the fact that all π values refer to the n-octanol/water 
system. 

Πx= log Px – log PyH                              (Equation 5) 

ρ σ = log KRX – log KRH                                    (Equation 6) 

Where, log P = logarithm of 1-octanol-water partition coefficient. 

ρ (rho) = Proportionality constant designating the sensitivity of the reaction to electron density. 
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y = A parent compound (i.e., an unsubstituted reference compound/drug). 

The hydrophobic characterictic, designated by πx, may be correlated to a drug’s distribution 
pattern, within which a given substituent ‘x’ affects molecular behavior and conduct with regard 
to its: 

1. Distribution and transport,  and 

2. Drug-receptor activities. 

Salient Features: The various salient features of Hansch equation are as enumerated under:  

(1)Value of π is indicative, to a certain extent, the behavioural pattern of a ‘substituent’ 
contributing to the solubility behavior of a molecule under investigation. It also reflects upon the 
manner it gets partitioned between lipoidal and aqueous interfaces in the reputed compartments it 
happens to cross as a ‘drug’ so as to reach the ‘site of action’ ultimately. 

(2) It is, however, not very clear and definite whether the solid surface of a drug undergoes 
adsorption on colloidally suspended plasma proteins while establishing the hydrophobic 
characteristics π. 

Example: β-Halo-arylamines: The adrenergic blocking profile of β-halo-arylamines was 
observed to be solely related to the constants, π and σ; and specifically excluded the steric factor 
altogether. 

i.e., log 1/C = 1.22 π – 1.59 σ + 7.89 

CH
X

C
H2

N R'

R
Y

 

The aforesaid equation offers a dictum that the ‘biological response’gets enhanced if the 
substituents possess a positive π value and a negative σ value; or more explicitely the 
substituents must preferentially be both hydrophobic in nature and electron donating in character. 

It has been established beyond any reasonable doubt that there exists no correlation between the 
π factor and the P value; therefore, it is quite feasible to have Hansch equations essentially 
comprising of these two stated components: 

Examples: Phenanthrene aminicarbinols: An analogues series of more than one hundred 
phenanthrene aminocarbinols were successfully synthesized and subsequently screened for their 
antimalarial profile. Interestingly, the analogues series fitted appropriately into the following 
version of Hansch equation: 

Log 1/C = - 0.015 (log P)2 + 0.14 log P + 0.27 � πx + 0.40 � πy + 0.65 � σx + 0.88 � σy + 2.34 
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Salient features: The various salient features that may be derived from the above equation are, 
namely: 

(1) As the hydrophobicity of the molecule (P) enhances there exists a very nominal increase in 
the antimalarial activity. 

(2) The corresponding constant is low (0.14) which reflects that the increase in antimalarial 
activity is also low. 

(3) The value of (log P)2 evidently reveals that there prevails a maximum P value for activity. 

(4) Further the above equation suggests that the antimalarial activity gets enhanced appreciably 
when the hydrophobic moieties are strategically located either on ring ‘X’ or more specifically 
on ring ‘Y’. It further ascertains that the hydrophobic interactions(s) are virtually taking place at 
these sites. 

(5) The electron- withdrawing substituents on rings ‘X’ and ‘Y’ contribute enormously to the 
antimalarial activity; however, the effect is more on ring ‘Y’ than in ring ‘X’. 

Free-Wilson analysis (structure-property relationship) 

In 1964, Free and Wilson derived a mathematical model that describes the presence and absence 
of certain structural features, i.e. those groups that are chemically modified, by values of 1 or 0 
and correlate the resulting structural matrix with biological activity values, following Eqn. 7; the 
values ai in Eqn.7 are the biological activity group contributions of the substituents X1, X2,…Xi 

in the different positions P of compound, the most often the unsubstituted parent structure of a 
series[105,106]. The method of Free and Wilson is based upon an additive mathematical model in 
which a particular substituent in a specific position is assumed to make an additive and constant 
contribution to the biological activity of a molecule in a series of chemically related molecules. 
This method is based on the assumption that the introduction of a particular substituent at a 
particular molecular position always leads to a quantitatively similar effect on biological potency 
of the whole molecule, as expressed by the equation 

log 1/C = Σ ai + µ                        (Equation7) 

ai = substituent group contributions, µ = activity contribution of reference compound 



Pharmacologyonline 1: 306-344 (2011)             Newsletter             Jhanwar et al. 

 

 
 

340

 

Figure 1: Schematic presentation of a molecule for Free Wilson analysis. A common skeleton 
bears subsituents Xi in different positions p; the presence or absence of these substituents is 
coded by the values 1 and 0, respectively. 

Mixed Hansch/Free-Wilson model 

The similarity in approaches of Hansch analysis and Free-Wilson analysis allows them to 
be used within the same framework. This is based on their theoretical consistency and the 
numerical equivalencies of activity contributions. This development has been called the mixed 
approach and can be represented by the following equation: 
 
Log 1/C = � ai + � cj Фj + constant                       (Equation 8) 
 
The term ai denotes the contribution for each ith substituent, whereas Фj is any physicochemical 
property of a substituent Xj. 
Equation 8 combines the advantages of Hansch and FreesWilson analyses and widens the 
applicability of both methods. Physicochemical parameters describe parts of the molecules with 
broad structural variation, whereas indicator variables ai (Free Wilson type variables) encode the 
effects of structural variations that cannot be described otherwise104,105. A recent study of the P-
glycoprotein inhibitory activity of 48 propafenone-type modulators of multidrug resistance, 
using a combined Hansch/Free-Wilson approach was deemed to have higher predictive ability 
than that of a stand-alone Free-Wilson analysis[107]. 
 

Conclusion: It involves the mathematical and statistical analysis of SAR-data which helps to 
reduce the number of educated guesses in molecular modification. QSAR is thus a scientific 
achievement and an economic necessity to reduce an empiricism in drug design to ensure that 
every drug synthesized and pharmacologically tested should be as meaningful. 
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