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Introduction 

Transcription factors have been identified as the major regulators of gene activity and 

therefore control the expression of most known proteins. Transcription factors per se do not 

exert any other function than to transform a message that was received by a cell via a receptor 

and its subsequent signalling molecules into the nucleus and onto the level of gene activity by 

either promoting or silencing gene transcription (1, 2).  

 

The first transcription factors characterised had been often linked to malignant transformation 

and where e.g. termed “onco-genes” (3, 4), a misleading term as we know today. Today we 

have learned that transcription factors can be activated by most known growth factors and 

cytokines but also by hypoxia or oxidative stress (5, 6), lipids and polyunsaturated fatty acids 

(7), light (8, 9), stress (10, 11), or mechanical forces such as stretching (12, 13), as a response 

the expression of a whole array of genes is modified. Out of the function of certain 

transcription factors came the idea that if one can control their activity transcription factor 

modulation would be a tool to cure diseases (14-19). Such generalised conclusions are 

dangerous and ignore several basic aspects of cell biology. 

 

The usual transcription factor resides in an inert inactive conformation associated to the cell 

membrane, the endoplasmatic reticulum, or at a less well characterised localisation in the 

cytosol. Upon activation a transcription factor undergoes a conformational change and 

attaches to specific carrier proteins that translocate it into the nucleus where it recognises a 

more or less specific DNA sequence to which it binds. Binding onto it specific DNA sequence 

affects the structural conformation of the DNA sequence and of some of the neighbouring 

nucleotides, the DNA un- or up-winds and becomes more accessible for binding of the RNA 

transcription machinery if the transcription factor activates a gene. However, transcriptional 
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regulation is dependent not only on transcription factor activation and chromatin remodeling, 

but also on co-regulators, co-activators, and co-repressors of the transcription factors. 

 

Furthermore, transcription factors can only exert their function if they find a specific the DNA 

sequence and folding pattern that has to be associated with the right chromatin formation. 

There is an expanding array of additional modifications that titrate transcriptional regulation 

for the specific conditions of a particular cell type, organ system, and developmental stage, 

and such events are likely to be greatly influenced by upstream signalling cascades (1, 2, 20). 

While the basic mechanism as the proximal binding of essential transcription factors to the 

TATA-box and their interaction with the RNA polymerase II and co-activators has been 

studied for several transcription factors their function as a co-activator or transcription 

enhancer factor binding at a more distant location to the TATA-box is not well understood 

and is dependent on the folding and the relative location of the binding site to the TATA-box 

binding transcription factor (2, 21). A similar scenario accounts for the silencing function of 

transcription factors, where a single or multiple transcription factors bind to a defined DNA 

sequence and inhibit the action of the transcription machinery, e.g. the glucocorticoid receptor 

often silences genes which have no classical glucocorticoid response element in their 

promoter (22, 23). 

 

Cell type specific transcription factors:  

Beside general occurring and functioning transcription factors there are some cell type 

specific ones and those that exert a specific function under specific conditions or according in 

which cell type they are activated (24). Transcription factors Pax3 induced a mesenchymal to 

epithelial transition and the Pax3/FKHR complex affected the morphogenesis of human 

osteosarcoma cells (25). LEF1 affects cell survival in epithelial cells during tooth 

development were it mediates the Wnt signal (26). Several trophoblast specific transcription 
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factors have been reviewed by Knofler et al (27) but those have been mainly described in 

mouse models. However, since not all transcription factors have been identified yet “cell type 

specific” has to be used with caution as shown by a review regarding “organ specific” 

transcription factors including forkhead box A2 (HNF)-3beta, HNF-3/forkhead homolog-8 

(FoxF1), HNF-3/forkhead homolog-4 (FoxJ1), thyroid transcription factor-1 (Nkx2.1), 

homeodomain box A5 transcription factor, the zinc finger protein Gli, and GATA 

transcription factors, as well as the basic helix-loop-helix Pod1 transcription factor (28). The 

family of MyoD transcription factors was described as myogenic differentiation factor 

triggering the maturation of smooth muscle cells (29). However, MyoD alone seems to be 

insufficient to control smooth muscle cell differentiation and needs the interaction with other 

related transcription factors (30). Therefore, it is often misleading to term a transcription 

factor cell type specific and more research is needed. 

 

How to modify the action of transcription factors in therapy:  

In order to use a transcription factor as a target in a new therapeutic strategy it seems to be 

unwise to block its function in an entire organism or to silence it for extended periods. There 

are several options to modify the action of transcription factors: (i) direct blocking of their 

activation by specific drugs, (ii) suppression of their expression by antisense oligo 

nucleotides, (iii) expression control by small inhibitory RNAs (siRNA), (iv) “catching away” 

activated transcription factors with decoy DNA oligo nucleotides of a specific DNA-binding 

sequence, (v) intercepting their interaction with other proteins, or (vi) transfection diseased 

organs/cells with overexpression vectors for a missing transcription factor. An overview of 

the current available methods that can be used to control the expression or function of 

transcription factors is provided in the following:  
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Antisense oligodeoxynucleotides can be used to induce a fast degradation of any gene of 

interest and use a natural occurring mechanism of the cells defence system based on the 

activation of RNase H that recognizes double stranded RNA-DNA strands and cleaves them 

(31). Most of the approaches to down regulate the expression of transcription factors by 

antisense oligonucleotides are in a trial phase which did not exceed the cell culture level or 

animal model. A major problem for antisense oligonucleotides is the delivery system. 

Antisense oligonucleotides are sensitive to a variety of enzymes present in the blood stream 

and in other body fluids (31 - 33).  

Small inhibitory RNAs also use a natural occurring cellular virus defense system. Here a 

double stranded short (20-40 nucleotides) oligodesoxyribonucleotide sequence is introduced 

into the cell where it is recognised by specific enzymes. The double stranded RNA is bound, 

one of ist strands is degraded and the the remaining strand is used by the enzyme to find a 

new matching single stranded mRNA which binds and is degraded. Intersstingly the detecting 

RNA strand is not degraded by the enzyme and is re-used to find and destroy traget mRNAs 

(34, 35). The mRNA eliminating effect of siRNA seem to be very precise and target specific, 

however, the latter effect depends on the carefull design of the to be used sequence. Similar 

problematic is the cell type specific delivery. 

 

A more promising method was termed decoy oligonucleotides. Decoy oligonucleotides are 

synthetic double stranded oligonucleotides containing a transcription factor specific DNA 

consensus sequence and if present in the cytosol of any cell will bind active transcription 

factors and thereby prevent their migration into the nucleus. This method does not down-

regulate the expression of a transcription factor but interferes with its function by compeating 

with its natural target DNA sequence in the nucleus. Decoy oligonucleotides have been 

successfully used to suppress the action of e.g. nuclear factor-kappaB (NF-kappaB) and E2F 

to prevent the progression of several diseases including renal diseases (36). Tdecoy 
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oligonucleotides have been successfully used to control the activity of the activator protein-1 

(AP-1), negative regulatory element (NRE) for the renin gene and angiotensinogen gene-

activating element (AGE), and ets-1 (37 - 40). .  

 

A major problem using any oligonucleotide construct is its short bio-stability, chemical 

modification in order to increase nuclease resistance often are accompanied by a decrease in 

the affinity for to the transcription factor or a loss of specificity of transcription factor 

binding. Neither circular dumbbell, nor chimeric decoy oligonucleotides changed the 

sensitivity to endonuclease cleavage. To address these problem so called “locked nucleic 

acids” of a decoy oligonucleotide for NF-kappaB have been designed with an increased 

stability compared to end-capped oligonucleotide (41). Such modified PNA-DNA are less 

sensitive to degrading enzymes and are still efficiently recognized by e.g. NF-kappaB, but 

their design and their safety in long term use as a drug has to proven (41 - 44). 

 

Peptide nucleic acids-DNA chimeras, defined as a double stranded DNA sequence molecules 

that binds to transcription factors in a sequence-dependent manner. An example has been 

described for NF-kappaB and Sp1 and were used in vitro cultured in human cells and there 

efficacy was found to be comparable to those observed using double-stranded DNA decoys 

(45 - 47). The advantage of this method may be that based on peptide nucleic acids -DNA 

chimeras can be modified by the addition of short peptides that ease cell penetration and 

nuclear localization. This option may also hold the key to a cell type specific delivery of 

oligonucleotides.  

 

Transcription factors as a traget in therapy: 

Activator protein-1 (AP-1): AP-1 controls proliferation and cytokine expression and therefore 

is invovled in tumorigenesis and in inflammatory diseases. Together with histone 
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acetyltransferase CBP/p300 and the transcription factors CCAAT/enhancer binding protein 

(C/EBP), nuclear factor – AT (NF-AT) AP-1 controls the expression of the asthma associated 

cytokine IL-5 and can be activated also by rhinvirus infection (48 - 51). AP-1 can be blocked 

by either suppression of its activation or by inhibition of AP-1 binding to its DNA consensus 

sequence. Both methods concepts have been successfully used in animal and cell culture 

models but not yet in patients. A small-molecule AP-1 inhibitor, PNRI-299, targets the 

oxidoreductase, redox effector factor-1, was reported in human lung epithelial cells (IC50: 20 

microM) and reduced eosinophil infiltration in mice (52). MOL 294 blocks AP-1 and NFΚB 

inhibitor, controlling both factors at the transcriptional level (52). SP100030 inhibited AP-1 

and NFΚB activation in Brown-Norway rats (53). Cyclosporin A, the adrenal steroid 

dehydroepiandrosterone, and the macrolide clarithromycin suppress DNA-binding of AP-1 

(37, 54, 55). Decoy oligonucleotides have also been successfully used to block the action of 

AP-1 (35).  

 

The CCAAT/enhancer binding proteins (C/EBP): Human C/EBPs consist of six known 

isoproteins (-α, -β, -γ –δ, -ε, and –ζ) which are all keep the balance between cell proliferation 

and cell differentiation and may even be expressed in a cell type specific pattern in the lung 

(56 – 58). The hyperplasia of smooth muscle bundles in the airways of patients with asthma  

seem to originate from a lack of C/EBP- α that leads to a less good growth control in this cells 

(59). Ceramide, a sphingolipid, inhibits the transport of activated C/EBP-α and NF-E2-related 

factor-2 (Nrf2) into the nucleus (60). Curcumine interfere with C/EBP-α and –β binding to 

their DNA consensus sequence (61). Trichostatin A inhibits C/EBP-α mRNA levels while 

valproic acid down-regulated its protein expression in adipocytes (62). Good ccontrol of 

smooth muscle cell differentiation was achieved by CCAAT-decoy oligonucleotide and were 

well tolerated in vivo in animal models and in pre-clinical studies (63 - 65). However, a 
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general blockade of all C/EBP-isoproteins by e.g. decoy oligonucleotides is not advisable 

since the various C/EBP-isoproteins exert distinct often opposing function (65). Here only cell 

type specific inhibition or induction of C/EBPs will help and has to be further investigated. 

 

GATA-:  GATA-3 a cell lineage-specific factor expressed in Th2 cells subsequent to STAT-6 

activation in the context of inflaamtory diseases (66, 67). GATA-3 function was sucessfully 

suppressed by antisense oligonucleotides (68).  

 

Nuclear FactorkappaB (NFΚB): The NFΚB transcription factor family is involved in the 

pathology of many diseases including AIDS, atherosclerosis, arthritis, asthma, cancer, 

diabetes, inflammatory bowel disease, muscular dystrophy, stroke, and viral infections (66, 

67). Its ubiquitous action is important in host defence and in chronic inflammatory diseases 

and therefore, NFΚB control was early suggested as a potential therapeutic approach for (69, 

70). Glucocorticoids have been reported to inhibit NFΚB activity but the mechanism is 

unclear (71 - 74). Pranlukast, pyrrolydine dithiocarbamate, and fosfomycin have been 

reported to inhibit NFΚB activity (74 - 76). Isoprenoids such as the kaurene diterpenoid and 

sesquiterpene lactone class and also the flavonoid silybin inhibit NFΚB activity, but their 

mode of action his unknown (77, 78). In an animal model decoy oligodeoxynucleotides NFΚB 

blocked its activity efficiently in airway immune cells, but not in structural lung cells which 

may indicate a cdll type specific delivery mode opf decoy oligonucleotides (77, 78).  

 

Nuclear factor E2 p45-related factor 2 (Nrf2)/ antioxidant response element (ARE): 

Nrf2/ARE is involved in the oxidative stress response in a beneficial manner that would 

protect hte affected cell from stress and therefore not inhibition but activation wopuld be of 

interest for therapy (79 - 81). As for C/EBPs ceramide inhibited the transport of activated 
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Nrf2 into the nucleus (60) which indicates ist low transcription factor specificity. Moreover, if 

cermaide would be used to block the pro-inflammatory action of NFΚB at the same time it 

would block the benficial action of Nrf2/ARE. 

 

Peroxisome Proliferator-activated Receptor (PPAR): PPAR (-α, -β, -γ, -δ) interact with the 

glucocorticoid receptor and with several C/EBP-isoproteins and therefore participate in cell 

proliferation and differentiation. They therefore have a similar critical role in the pathogenesis 

of several diseases (82, 83). PPARγ agonists, glucocorticoids, and β2-agonists synergistically 

suppress cytokine expression at the transcriptional level (83). In regard to therapy there are 

already specific PPAR-isoform inhibitors and activators available (84). 15-deoxy-

Delta(12,14)-PGJ(2) (15d-PGJ(2)) and troglitazone both activate PPARγ inhibited the pro-

inflammatory action of TNFα (85). Ciglitazone and GW9662, two other PPARα agonists 

decreased airway hyperresponsiveness, basement membrane thickness, mucus production, 

collagen deposition, and TGFα synthesis in a mouse model (85, 86). PPAR-δ, incontrast, acts 

as an pro-inflammatory factor and binds to the same target DNA sequencess as PPARα, −γ, 

and its enhanced expression would be no benefit for asthma (82, 84 - 86). However, there 

could be a cell type or species specific effect of PPARs action since under certain conditions 

troglitazone counteracts the inhibitory effect of rapamycin on the PPARγ-C/EBP-α 

interaction (87).  

 

The signal transducer and activator of transcription 6 ( STAT6 ): The role of the JAK-STAT 

system in health and inflammatory lung diseases was reviewd by Pernis and Rothman 2002 

(88). TNFα, TGF-β, IL-4, and IL-13 are known activators of STAT6 (89, 90), and a 

polymorphism in the human STAT6 promoter could explain the genetic pre-disposition of 

high IgE levels in asthma patients and their siblings (91). Up to date the action of STAT6 is 
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only known to be inhibited by glucocorticoids (92, 93) and no other inhibitors for STAT6 

have so far been reported. 

 

Conclusion 

Transcription factors are important regulators for immune response, inflammation and 

tumorigenesis their inhibition or stimulation may cure a disease without the side effects of 

standard drugs if they can be applied in a cell type specific mode, but a practical application 

of the bench work that has been done may take some more years. A major point of concern is 

that most transcription factors are central control factors of tissue and organ homeostasis and  

each longterm inhibition or activation will most likely cause severe side effects in other 

organs. Cell type specific application of decoy or antisense oligonucleotides for NFΚB, Nrf2 

or STAT6, or specific agonists for PPARα and –γ have been attempted but not yet proven to 

be harmless over long period application. The key to success with such anovel therapeutic 

approach using transcription factors as medication comes with the cell type specific delivery 

system, a well known and not yet solved problem with the existing drugs.  
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