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ABSTRACT 

 

Objective: The aim of the present study was to determine whether anabolic androgenic 

steroids (AAS) have an effect on the levels of calcitonin gene-related peptide (CGRP) in 

the rat brain, using nandrolone decanoate as a prototype steroid. Method: Male Sprague-

Dawley rats received daily intramuscular injections of nandrolone decanoate (15 mg/kg) 

for 14 days. The effect of AAS on CGRP immunoreactivity (CGRP-ir) in various regions 

of the rat brain was investigated using radioimmunoassay. Results: The AAS 

administration caused a significant increase in CGRP-ir in the nucleus accumbens and the 

amygdala. After three weeks of recovery, a high level of CGRP-ir still remained in the 

nucleus accumbens. On the contrary, in the anterior pituitary the CGRP-ir levels became 

significantly lower after administration of nandrolone decanoate. Conclusion: The 

observed alterations of the CGRP-ir levels could have an impact on biochemical events 

that are associated with the adverse behaviors and physical effects observed in connection 

to AAS abuse.   
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INTRODUCTION 

 

Anabolic androgenic steroids (AAS) are synthetic derivatives structurally related to 

testosterone. Testosterone is the primary natural male hormone and is responsible for the 

androgenic (masulinizing) and anabolic (tissue building) effects observed during male 

adolescence and adulthood (1). Clinically, androgens are used to treat adult men with 

androgen deficiency, different forms of anaemia, and patients suffering from a number of 

diseases that reduce protein synthesis or enhance breakdown of proteins (e.g. burns, 

trauma, severe infections and malignancies) (1). However, it is the non-medical use of 

these steroids that has evoked concern. During the last decades, AAS have been used by 

athletes with the hope of improving their performance. Apart from athletes, AAS abuse has 

also developed among body builders and persons not directly connected to sports. It 

appears that these drugs are being used for cosmetic purposes as well as for increasing 

self-esteem (2) and promoting aggressive behavior (3). 

 

This dual role as an effective pharmacotherapy for a variety of disorders and a drug of 

abuse places AAS in the company of the opiates, sedative-hypnotics and stimulants. In 

fact, several studies have provided support for the claim that AAS are drugs of 

dependence, using DSM III and IV criteria (1,4,5). Furthermore, a recent report indicated 

an alarming trend where AAS are suggested as a gateway to opioid dependence (6).  

 

While users report benefits of AAS use, such as improved appearance and increased size 

and strength (7), they also experience a number of adverse effects. These include skin 

disorders, liver abnormalities, gynecomastia and hypertension (8-11). Chronic 

administration of steroids has been reported to induce a reduction of circulating levels of 

ACTH (12). In addition, LHRH, LH and FSH levels are all decreased due to negative 

feedback of AAS on the hypothalamic-pituitary-gonadal axis (13). Apart from these 

physical changes, psychological symptoms have been associated with AAS misuse. The 

users often experience a promotion of self-image, increased libido, euphoria and a sense of 

well-being (9) at the initial stages of the abuse. More importantly, there are also a number 

of reported negative psychological side effects such as increased irritability, aggression, 
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anxiety and depression (3,14,15). Furthermore, severe crimes and unprovoked violence are 

often committed by AAS misusers (16,17). 

 

Recent studies have demonstrated that nandrolone decanoate can affect transmittor systems 

in the brain and the levels of endogenous neuropeptides (18-23). Thus, it has been reported 

that AAS affect the concentration of the tachykinin substance P and its N-terminal 

metabolite substance P(1-7) as well as the density of the neurokinin 1 (NK1) receptor in rat 

brain (18,22). The neurotransmittor and neuromodulator substance P co-exists with a series 

of other peptides, including the calcitonin gene-related peptide (CGRP). In some parts of 

the CNS virtually all neurons with substance P also contain CGRP.  

 

CGRP is a 37 amino acid neuropeptide generated from the alternative splicing of the 

calcitonin gene (24,25). Hormones and second messengers regulate the expression of the 

calcitonin/CGRP gene (26,27). The distribution of CGRP mRNA, CGRP immunoreactive 

cell bodies and nerve fibers in rat brain has been reported (28-30) and reviewed (31). 

CGRP is one of the most widely distributed peptides both in the CNS and the 

cardiovascular system in vertebrates (32). High concentrations of CGRP in rat CNS are 

found in the dorsal spinal cord, amygdala and pituitary (33).  

 

A wide variety of biological effects on various tissues have been reported for CGRP. The 

peptide is one of the most potent endogenous vasodilatory substances known so far (34,35) 

and also seems to have a functional role in food intake (36,37). The peptide is further 

known to take part in the neural regulation of hormone secretion (38) and furthermore 

CGRP has been shown to interact with both dopamine and noradrenaline systems in the 

brain. Thus, CGRP administered into rat VTA significantly increased the dopamine 

metabolite DOPAC concentration in the frontal cortex (39). In addition, CGRP has been 

suggested to inhibit noradrenaline release in rat hypothalamus (40). In particular the 

finding that CGRP affects dopamine release and metabolism has raised the question 

whether the peptide may play a role in neuropsychiatric disorders. Previously, it was 

reported that the concentration of CGRP in cerebrospinal fluid is increased in depressed 

patients compared to healthy individuals (41). Furthermore, it has been shown that major 

antipsychotic drugs appear to reduce CGRP release in brain (42). These findings, together 
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with a recent study that reported a release of CGRP in rat limbic forebrain after 

administration of psychotomimetic drugs (43), provide support for a role of CGRP in 

psychotic disorders. 

 

To the best of our knowledge, no studies have been performed to determine the effect of 

AAS on CGRP levels in any species. The aim of the present study was to examine the 

potential impact of nandrolone decanoate administration on CGRP concentrations in 

regions of the rat brain that can be anticipated to be associated with the adverse behavioral 

effects connected to AAS abuse in human. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MATERIALS AND METHODS 
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Chemicals 

The synthetic peptide, α-rCGRP and the labeled peptide, Tyr-α-rCGRP(23-37) were 

aquired from Bachem Chem (Budendorf, Switzerland) and the AAS, nandrolone decanoate 

from Organon (Oss, Netherlands). The chromatographic material SP-Sephadex C-25 was 

obtained from Pharmacia Biotech AB (Uppsala, Sweden) and the sterile arachidis oleum 

from Apoteket AB (Umeå, Sweden). All other reagents were of analytical grade from 

commercial sources. 

 

Animal experiments 

The study included 32 male Sprague-Dawley rats. These rats were housed under controlled 

conditions of temperature, humidity and light, and had free access to food and water. The 

animals were randomized into two groups (16 animals in each group). One group was 

given an intramuscular (i.m.) injection of nandrolone decanoate (15 mg/kg) once daily for 

14 days. The control group received i.m. injections of oil vehicle sterile arachidis oleum. 

On the fifteenth day of the experiment the two groups were divided into four subgroups, 

with eight animals in each. Half of the animals were sacrificed by decapitation and the 

others continued for an additional three weeks without any drug treatment (recovery 

period) before decapitation. After decapitation the brains were rapidly dissected. The 

hypothalamus, nucleus accumbens, striatum, amygdala, hippocampus, substantia nigra, 

VTA, PAG, pituitary gland (divided into the anterior and the posterior lobe) and the spinal 

cord (divided into the ventral and dorsal part) were collected. The tissues were stored at -

80°C until further processing. 

 

 

 

 

Homogenization and ion exchange chromatography 

The frozen tissues were weighed and 1 ml of preheated (90°C) acetic acid (1M) was added 

to each tube. The mixture was incubated in a water bath (90°C) for 5 minutes in order to 

reduce enzyme activity. After cooling on ice, the tissues were carefully homogenized by 

ultrasonification and thereafter heated for another 5 minutes in the water bath (90°C). The 
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homogenates were chilled on ice and centrifuged at 14 000 x g for 10 minutes in 4°C. The 

supernatant was collected and diluted (1:1) with a cold (4°C) 0.1 M formic acid/ 0.018 M 

pyridine, pH=3 (Buffer I). The supernatants were further purified with ion exchange 

chromatography. Briefly, small plastic columns were packed with SP-Sephadex C-25 gel 

(packed gel volume = 1 ml). Each column was washed with 20 ml Buffer I before the 

samples were added. After additional washing with 10 ml Buffer I, elution was carried out 

with 4 ml of Buffer III (0.35 M formic acid/0.35 M pyridine, pH 4.4). The columns were 

then washed with 6 ml Buffer III before eluting with 4 ml Buffer IV (0.8 M formic acid/0.8 

M pyridine pH 4.4). The fraction containing CGRP was eluted with 4 ml Buffer V (1.6 M 

formic acid/ 1.6 M pyridine pH 4.4). All elutes were collected in plastic tubes and 

evaporated in a Speed Vac centrifuge overnight. The tubes were then stored at -20°C and 

subsequently analyzed by radioimmunoassay.  

 

Radioimmunoassay (RIA) 

The samples were redissolved in methanol/0,1 M HCl (1:1). Samples or standards (25 µl) 

were incubated together with 100 µl of antibody (final dilution 1: 2000000) and 100 µl of 

iodinated peptide (4700-5200 cpm). The iodinated CGRP was prepared from Tyr-α-

rCGRP(23-37) by the chloramine T procedure as described elsewhere (44). The antibody 

and the 125I-labeled peptide were diluted in gelatin buffer containing 0.1% gelatin, 0,1% 

bovine serum albumin, 0.82 % NaCl, 0.93 % EDTA in 50 mM sodium phosphate (pH 7.4). 

The tubes were incubated at 4°C for 24 h. The incubation was terminated by adding 200 µl 

active charcoal (750 mg of charcoal / 75 mg dextran dissolved in 200 ml 50 mM sodium 

phosphate buffer). The tubes were incubated for 10 minutes on ice. The bound and free 

peptides were subsequently separated by centrifugation for 1 min. The supernatant, 

containing the bound fraction, was collected and the radioactivity was determined in a 

gamma-counter. 

 

The CGRP antiserum used was raised in rabbits against the α-rCGRP-thyroglobulin 

conjugate and reacts with α-rCGRP but also shows cross-reactivity with different CGRP 

analogues, specifically the two C-terminal fragments α-rCGRP(19-37) and α-rCGRP(17-
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37). However, the latter two are eluted in different fractions (45) as compared to α-rCGRP 

and are hereby separated by the ion exchange chromatography step.  

 

High performance liquid chromatography (HPLC) characterization 

In order to characterize the detected CGRP immunoreactivity, pools of homogenates from 

rat anterior pituitary were separated by SP-Sephadex, evaporated, redissolved in 15% 

acetonitrile (ACN) and 0.1% trifluoroacetic acid (TFA), and further analyzed by reversed 

phase HPLC using a Pharmacia SMART system (Pharmacia Biotech, Uppsala, Sweden). 

The system was equipped with a µRPC C2/C18, SC 2.1/10 column (particle size 3 µm, 

120Å; 100×2.1 mm) and UV-absorbance was detected at 214 nm. Elution was carried out 

with a linear gradient of ACN (15-60%) containing 0.01% TFA at a flow rate of 100 

µl/min. Fractions (100 µl) were collected and subsequently analyzed by RIA. 

 

Statistical analysis 

Statistical evaluation of RIA data was performed with the Student’s unpaired t-test. P 

values less than 0.05 were considered significant. 

 

RESULTS 

In the present study, the levels of CGRP were measured in all the dissected brain 

structures. The CGRP concentrations were below the detection limit in the hippocampus, 

substantia nigra, VTA, posterior pituitary and the ventral spinal cord. High levels of CGRP 

were found in dorsal spinal cord, amygdala and anterior pituitary. As can be seen in Table 

1, the two-week steroid treatment caused a significant increase in the CGRP levels in 

nucleus accumbens (p=0.04) and amygdala (p=0.015) compared to the control group. After 

the three-week recovery period this effect sustained in nucleus accumbens (p=0.03) 

whereas the CGRP-ir in the amygdala was restored to control level. In the anterior 

pituitary a significant decrease of the CGRP concentration was observed in the AAS 

treated animals (p=0.01). The difference between the two groups remained significant after 

the three-week recovery period  (p=0.0002).  
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Tissue CGRP 

 

Control                     AAS 

CGRP (with recovery) 

 

Control                     AAS 

Amygdala 2.6 ± 0.29 4.6 ± 0.62* 6.8 ± 0.51 8.1 ± 0.67 

Hypothalamus 0.48 ± 0.03 0.56 ± 0.04 0.56 ± 0.04 0.66 ± 0.06 

Nucleus accumbens 0.13 ± 0.01 0.18 ± 0.02* 0.21 ± 0.02 0.29 ± 0.03* 

PAG 1.0 ± 0.08 1.1 ± 0.14 0.6 ± 0.13 0.8 ± 0.06 

Pituitary anterior 5.6 ± 0.94 2.5 ± 0.46* 5.0 ± 0.37 2.6 ± 0.32* 

Spinal cord dorsal 4.2 ± 0.70 5.0 ± 0.8 4.6 ± 0.67 4.9 ± 0.73 

Striatum 0.57 ± 0.07 0.65 ± 0.02 1.3 ± 0.15 1.8 ± 0.21 

 

Table 1: CGRP concentration (fmol/mg tissue ± SEM) in rats treated with AAS 

(nandrolone decanoate) compared to controls. Measurements were made immediately 

after 14 days of treatment and after a three-week recovery period.  * p<0.05 

 

 

The HPLC characterization by the Pharmacia SMART system demonstrated that the 

highest concentrations of CGRP as determined by RIA after reversed phase HPLC-

separation was found in the fraction co-eluting with synthetic α-rCGRP, as can be seen in 

figure 1. The retention time for synthetic α-rCGRP was 16.03 whereas β-rCGRP eluted 

after 15.24 minutes. Thus, indicating that the major CGRP immunoreactivity observed can 

be attributed to α-rCGRP. Considering the fact that the cross-reactivity for β-rCGRP 

earlier was defined in our lab to be 55% with the CGRP antibody used, less than 

approximately 5% of the CGRP immunoreactivity in the anterior pituitary is presumed to 

be β-rCGRP. 



Pharmacologyonline 1: 177-195 (2005)                                                    Hallberg et al. 

 186

 
 

Figure 1: The upper chromatogram shows pooled homogenates from the rat anterior 
pituitary (pre-separated on SP-Sephadex columns), with the addition of 3 µg synthetic α-
rCGRP. The lower diagram shows the CGRP immunoreactivity in HPLC fractions (100 
µl) from pooled homogenates from the rat anterior pituitary without the addition of 
synthetic α-rCGRP. 
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 DISCUSSION 

 

To our knowledge, no studies have been performed to determine the effect of AAS on 

CGRP levels. The dose nandrolone decanoate used, corresponds to the range of human 

AAS-abuse and is approximately 40 times larger than the therapeutic dose. This study was 

initiated since it was previously demonstrated that the levels of substance P and substance 

P(1-7) were significantly altered after AAS administration in areas of the rat brain 

anticipated to be of importance for e.g. mediating aggressive behavior (22). As seen in 

Table 1 nandrolone administration induces significant alterations in the CGRP levels in 

central structures of the brain. However, although CGRP is often co-localized with 

substance P, direct correlations of the levels of CGRP and substance P could not be 

observed in the regions studied. 

 

In amygdala, a region with dense CGRP receptor expression (46), a significant increase of 

CGRP-ir was encountered after the nandrolone decanoate administration. Amygdala, a 

center for learning fear and memory functions (47), is also a critical structure for 

modulation of aggression (48). Furthermore, the central nucleus of the amygdala also 

mediates cardiovascular and autonomic changes associated with defense or fear responses 

(49). Although, peripheral administration of CGRP has a powerful vasodilator effect it has 

also been demonstrated that microinjection of CGRP into amygdala produces an increase 

of the mean arterial pressure in rat (50,51). Thus, it is possible that the hypertension 

observed in AAS-users could partially be due to elevated levels of CGRP in the amygdala. 

 

The nucleus accumbens is one of the central structures involved in reward mechanisms and 

especially the nucleus accumbens shell is rich in CGRP receptors (46). Activation of a 

dopamine pathway projecting from the VTA to nucleus accumbens seems to cause 

rewarding effects and there is evidence that drugs of addiction can cause an increase in the 

release of dopamine in the nucleus accumbens. As reported herein administration of 

nandrolone decanoate significantly increases the CGRP-ir in the nucleus accumbens, 

which sustained after three weeks. Since CGRP has been shown to affect dopamine levels 

in the reward system (39), it is reasonable to assume that the higher CGRP-ir in nucleus 
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accumbens could indirectly alter the rewarding effects that are suggested to be associated 

with AAS administration (52,53). In recent studies αCGRP knock-out mice were shown to 

display significantly less morphine withdrawal signs (54,55), thus, pointing towards an 

important role of CGRP in the brain reward system. Considering the fact that CGRP is a 

potent inhibitor of substance P degradation (56) and that CGRP will inhibit the formation 

of the bioactive N-terminal fragment substance P(1-7) it is tempting to suggest that the 

observed effects in the αCGRP knock-out mice might in fact be due to an increased 

formation of substance P(1-7), another known inhibitor of morphine withdrawal signs (57-

59).  

 

The PAG is connected with numerous brain regions and is involved in the integration of 

behavioral and physiological responses to threatening or stressful stimuli. The region play 

a role in the expression of defensive rage behaviors (48) and should be of relevance in 

context when the influence of nandrolone misuse on behavior is addressed. Notably, in 

contrast to substance P and its N-terminal fragment substance P(1-7), that both were 

present in PAG in significantly higher concentrations than in control animals (22) the 

CGRP levels in the PAG were not affected by nandrolone administration.  

 

High concentrations of CGRP-like material is present in the pituitary gland, a structure 

reported to have very low density of CGRP binding sites in human (60). The significantly 

lower CGRP levels observed in the AAS-treated animals might reflect an effect of the 

involvement of CGRP in the pituitary function; the elevated plasma hormonal levels could 

cause a feedback inhibition on the pituitary hormones and thereby affecting CGRP as well. 

It has also been suggested that CGRP nerve fibers of the anterior pituitary respond actively 

to changes in the plasma hormonal levels (61). AAS administration have previously been 

shown to reduce levels of circulating ACTH (12). Since CGRP is known to cause an 

increase in ACTH release (38), the AAS-induced decrease of CGRP-ir observed in the 

present study is in agreement with these results. Interestingly, the levels of CGRP in the 

pituitary remained decreased  three weeks after  the treatment period.  
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Another observation is that the CGRP levels in some regions are different in the two 

groups of control animals. Part of the explanation could be that CGRP levels change with 

age (62,63). For example, in the hypothalamus an age-related increase in CGRP levels has 

been observed up to 12 weeks of age, whereas in plasma the CGRP concentrations 

increases continuously with age (62).  

 

In general there is no mismatch between the distribution of CGRP binding sites (pituitary 

gland one exception) in rat brain (33). It should be emphasized that in the amygdaloid 

body and nucleus accumbens where there are high levels CGRP receptors in rat, only low 

levels have been detected in humans (60,64).  

 

CONCLUSION 

In conclusion, the present study has demonstrated that chronic treatment with the AAS 

nandrolone decanoate significantly affects levels of CGRP in areas of the rat brain that are 

associated with behavior as well as hormonal secretion and cardiovascular function. 

Although it seems likely that CGRP alterations in response to AAS administration result in 

physiological consequences in rat, it is unknown if AAS exert a corresponding impact on 

CGRP levels in humans.  
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