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                                                   SUMMARY 
 
The data presented here are preceded by a review of the 

conventional ex vivo model of conditioned ischemic learning. The 

fluorescence kinetics of indistinct pools of reduced 

pyridinnucleotides, together with the conventional functional 

parameters observed in short, long and preconditioning preperfusion 

conditions, as well as in the common phase of protracted ischemia 

(30 min) and in the phase of reperfusion monitored over 60 min, 

demonstrate significant trends in the context of the more recent 

integrated metabolic observations of heart perfusion after capsaicin 

pretreatment. The present paper reports the mean kinetic values of 

the metabolic parameters and those from functional sampling, with 

emphasis on protracted ischemia following short (15 min) and long (1 

h) perfusion with and without short preconditioning ischemic insults in 

capsaicin-treated and untreated specimens. We also describe some 

trends observed in single cases, where the phases of preischemic 

conditioning, protracted ischemia, and reperfusion demonstrated 

both the expected protection effect and the prevalent damage. The 

paper examines the significance of this experimental model in the 

biological and pharmacotoxicological integrated context. 

 
 
 
 
 
 
 



Pharmacologyonline 3: 125-176 (2005)                   Rossini et al. 

 127 

 
 
 
1. INTRODUCTION 
 
 
1.1. LITERATURE OVERVIEW 
 
Oxygen use and short-term adaptation to its deprivation have been 

analyzed in a number of experimental models. Cardiovascular 

observations have mainly focused on ischemic/anoxic and 

reperfusion damage and protection. Some of the most recent studies 

have been conducted not only in vivo and ex vivo on native, 

supposedly intact organs and tissues perfused with blood or 

crystalloid buffered solutions, but also on the cellular and subcellular 

samples. Different phenotypes and/or molecular dynamics and 

kinetic behaviours have been observed with cultured (24-48 h) 

cardiomyocytes vs freshly isolated myocytes and isolated perfused 

hearts, as well as within immature vs mature isolated cells and hearts 

from young vs aged rodents and other non human widely used 

experimental preparations [1-11]. Regional or global ischemia has 

been obtained in vivo, in situ or in vitro by occlusion of the coronary 

flow or by stopping the perfusion. The perfusate was mostly Krebs-

Henseleit (KH) bicarbonate buffer, reequilibrated with a 95% O2 and 

5% CO2 mixture, previously equilibrated with a mixture of 95% N2 

and CO2 at pH 7.40. The preparations were maintained at constant 

temperature during observations and measurements also under 

occlusion, to avoid hypothermia- induced cardioprotection. 

        



Pharmacologyonline 3: 125-176 (2005)                   Rossini et al. 

 128 

 

 

The Langerdorff rodent heart  preparation is a widely used model 

because the most advanced metabolic properties have been 

monitored associated with the evaluation of traditional functional 

parameters. In the isolated rat heart (r.h.), transient ischemic 

endogenous preconditioning (IPC) has previously been shown firstly 

mediated via a subfamily of protein kinase C (PKC) activation and 

translocation coupled to α1-adrenoceptor and B2 associated 

bradykinin receptors [12-13], or partly through endothelial function 

and B1 - not B2 - receptors [14-15]. IPC is not affected by depletion of 

endogenous catecholamines resulting from reserpine or 6-

hydroxydopamine treatment [16]. Activation of the α-1 adrenergic 

receptor has been shown to confer protection against the lethal injury 

from Ca2+ preconditioning (via the protein kinase C signaling 

pathway) [17]. Hearse and Sutherland [18] have more recently 

observed paradoxical exacerbation of contracture [19-22] followed by 

enhanced post-anoxic recovery both under ischemic and l-nor-

epinephrine preconditioning (PC), and Hearse, Ferrari and 

Sutherland [23] observed PC, but not paradoxical contracture in 

blood perfused r.h. during ventricular fibrillation and/or rapid pacing.  

     In the transient, early energy imbalance of IPC protocols, a small 

population of α-G, s or i subunit proteins appears to be involved as 

coupled to muscarinic M2 receptors and A1 adenosine receptors [24-

26].  
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Adenosine does not mediate improvement of functional recovery 

after PC in globally ischemic, isolated Langerdorff r.h. [27]. Increased 

adenosine formation through β-adrenergic receptors and 

noradrenaline release protects ischemic rat heart after hypoxic PC 

[27, 28-30]. Adenosine mediates persistent adrenergic 

desensitization in the r.h. via activation of iso-PKCs [31]. Although 

targeted deletion of the A3 Adenosine receptor confers resistance 

against myocardial ischemic/reperfusion injury, A3ARs are not 

required for the development of the early phase of IPC [32]. 

Additional references related to the open selectivity of the nucleoside 

receptors and transporters are mentioned below [133-136, 145, 155, 

161]. 

      Upregulation of cardiac uptake1 carrier and related loss of extra-

tissutal norepinephrine increase under ischemia and thereafter - 

except in the 1st minute - up to more than 20 min through reperfusion 

[33]. 

     Activation and translocation of iso-PKCs appear to be key events 

in r.h. ischemic and reperfusion damage, as well as in IPC [34-36]. In 

the same Langerdorff r.h. preparation, inhibition of some iso-PKC, 

which limits ischemic injury and eliminates the effect of IPC on 

stunning during reflow, is not related to PC attenuation of acidification 

[37-39]. In different cardiomyocytes from transgenic or normal in or 

ex vivo heart, not only the protein kinase C ε and δ isoforms, which 
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have been seen to have opposite effects [40-41], but also protein 

kinase A has been found to be independently associated to IPC (see 

also [42-47]).  

      RNA expression of the Na+/H+ exchanger isoform 1 is rapidly 

regulated in acutely ischemic rat myocardium [48]. 

      Inhibition of Na+/H+ exchange adds to the protective effect of IPC 

[49-51], but the same [pH]i decrease attenuation does not appear to 

be tightly coupled to Na+/H+ turnover [52]. In reperfusion injury, 

exchange of accumulated Na+ with Ca2+ is detrimental to function 

[53-57]. Dietary cariporide, a Na+/H+ exchange inhibitor, as well as 

treatment with an inhibitor of the reverse mode of the Na+/Ca2+ 

exchanger, confer cardioprotection following coronary occlusion and 

reperfusion [58-60]. Sodium and calcium overloads [61-63] and 

protection by metabolic uncoupling in reperfusion [64-66] may 

contribute to the understanding of our present data (see also [67]).  

     Some observations may be related to methodological conditions: 

in the case of myocardial stunning, an important functional 

impairment parameter in the evaluation of hypoxia-ischemia and 

reperfusion dynamics, the isovolumic preparation, has sometimes 

been subjected to changes in systolic and diastolic pressure by 

collapse and reinflation of the left ventricular balloon in order to 

counteract the no-reflow phenomenon [20-21, 52, 68]. Pacing at 2 Hz 

at 35 °C showed delay of ischemic contracture [50] instead of 

exacerbation. In the heart not immersed and overdrive paced (300-



Pharmacologyonline 3: 125-176 (2005)                   Rossini et al. 

 131 

330 bpm), earlier contracture development was found only after 

repetitive PC [69]. 

      Modulation of stunning by glycolysis, glyconeogenesis, 

glycogenolysis, and associated balance of proton production and 

cytosolic (coupled) export, are still debated (see [70-79] and below). 

                                        

The role of endogenous NO in monophosphoryl lipid A acute 

cardioprotection in the working isolated perfused r.h. [80] has not 

been confirmed in the isolated retrogradely perfused isovolumic 

preparation - either under constant flow or pressure perfusion - as a 

mediator of early IPC [81], whereas in a feline study NO-peroxynitrite 

exchange has been confirmed to be cardioprotective [82-83], and in 

mice cardiac myocyte IPC has been found to contribute integratively 

by both inducible and constitutive NOSs [84-85], a topic under that is 

rapidly evolving: NOSs “imported” by rapidly IPC-recruited 

endothelial progenitor cells mediate a protective myocardial effect 

[86]. Although oxygen-derived free radicals are not believed to 

contribute to PC in the r.h. [87], they are held to play a role both in 

reperfusion injury [88] and in IPC [89], as they affect myocardial 

stunning [90-91]. 

       Downregulation of the Na+-creatine cotransporter has been 

considered an important feature of the failing myocardium [92]. The 

dual regulation of muscle AMP-activated protein kinase, which 

inhibits the creatine kinase-phosphocreatine system and is inhibited 
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by phosphocreatine, while creatine antagonizes this inhibition [93], 

may be active in the heart. 

      IPC has been reported to be independent of r.h. mitochondrial 

F1F0-ATPase inhibition [94], whereas other researchers consider its 

integrity essential, and not only in this rodent assay (i.e.: rat [95]; dog 

[96]). In the same perfused r.h., mitochondrial vs glycolytic 

phosphate and redox potential sensitive mechanisms have been 

shown to be involved in the protection afforded by IPC ([68]. See the 

Discussion section). The sulphydryl redox potential modulates 

sarcoplasmic reticulum Ca2+ release in PC [97], even though 

glutathione depletion has not been found to be essential to 

ventricular reperfusion arrhythmias [98]. The large production of 

oxygen radicals from ischemic mitochondria in the Langerdorff r.h. 

has been measured in 1991 [99], and the importance of 

mitochondrial/cytosolic couplings in acute short-term 

ischemic/reoxygenation cycles, particularly in IPC transients, indirect 

pyridine redox potential [100] and sarcoplasmic reticulum Ca2+ 

turnover, have recently been restated in rat heart by Dhalla and 

Brandes et al. [101-102], after Zucchi et al. [103], as previously 

observed in ischemic heart failure in the guinea pig [104]. The initial 

phases of ischemia are associated with a time-dependent positive 

imbalance in mitochondrial oxyphosphorylation reactions [105-106]. 

Downregulation of oxygen demand, and altered mechanisms of 

energy transfer have also been  reported in acute hypoxia [107]. 
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       PC mechanisms activated by stretching tissues (injection of salts 

into the myocardium [108]), those elicited by pharmacological 

substances such as ethanol [109] and general anesthetics (i.e. 

[110]), or phosphodiesterase-5 and/or -6 inhibitors [111] occurring in 

endothelia [Cf.: 84, 112-113], or associated with the heat stress to 

cytoprotection, finally appear to develop through KATP channels [114-

118], and are not related to enhanced action potential duration in a 

dog model [119]. Use of K channel openers, such as cromakalim and 

bimakalim, pinacidil and micorantil, and antagonists such as 

glibenclamide, glyburide and 5-hydroxydecanoate, has confirmed the 

role of these channels in ischemia and reperfusion phenomena [120-

122]. In the r.h., cardioprotection, but not PC, is related to the special 

KIR, the inward-rectifier potassium channel assayed by dofetilide and 

terikalant [123]. Nevertheless, in the Langendorff r.h. calcium PC, but 

not IPC, bypasses the KATP channel, a model condition that may 

explain why patients chronically exposed to sulphonylurea 

hypoglycemics remain protected [124]. Mitochondrial KATP channels 

[125], as proven with diazoxide [36, 126-127], have been shown to 

be an (i.e. one) end-point receptor/effector contributing to triggering 

and mediation of cardioprotective effects in r.h., not only in acute and 

chronic ischemia/reperfusion, but also in both early and delayed PC 

[128] (the same holds true in rabbit ventricular myocytes, e.g.:[129]). 

      As the cross-talks among K+ specific channels, NO and 

interchanged reactive oxygen species, noradrenaline, mostly β [130-

132], and adenosine subfamilies of receptors and transporters [31, 
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133-136] are studied, naloxone sensitive δ1 opioid receptors - not µ 

or κ, which appear to be related to delayed cardioprotection [137-

143; i.e.: 144] -, and other peptidergic extended modulations, 

continue to be evaluated. Mitochondrial vs cytosolic phosphorylation 

and redox subcellular control networks are the focus of present 

research, both in r.h. and cardiac myocytes; the same problems are 

also being studied, for example, in rabbit [145] and chick 

cardiomyocytes [146-148]. G-Protein-coupled receptor internalization 

and primary triggering vs secondary processing signaling pathways, 

even in the immediate phase of protection against ischemia 

reperfusion injury - which consists both of irreversible necrosis and 

apoptosis by induction of phosphatidyl inositol 3-OH, P13-kinase, but 

not the p42/p44 cascade [149] -, are actually required to act together 

on mitochondria for IPC cardioprotection [150-162]. However, more 

integrated approaches extend the analyses to the responsive 

transcription factors [i.e.: 163]. 

 

1.2. THE CAPSAICIN-VANILLOID TOOL 

In the same way as reserpine and 6-hydroxydopamine [16] have 

been used to prevent catechol-dopaminergic and 

enteraminergic/serotoninergic sympathetic neurotransmission, 

capsaicin and other vanilloids have been used (after Jáncso and 

Jáncso-Gabór [164]) to activate by release nonadrenergic, 

noncholinergic, mostly peptidergic modulators, and produce a long-

lasting refractory state referred to as desensitization. A cloned subset 
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of capsaicin activated cation channel receptors has been associated 

with thermal and proton sensitive neuronal functions [165], and 

multiple iso-receptor groups have been characterized [166] by use of 

specific agonists and antagonists both in newborn [167-168] and 

adult mammals [169-171]. In the r.h., capsaicin targets and 

mechanisms of action have mostly been related to specific primary 

Ad-1 small myelinated centrally signaling afferent fibers that 

selectively contribute to the short local efferent circuits, which are 

activated by transient hypoxia and by anoxia/ischemia, underpinning 

chronic neuro-inflammatory disorders.  

 

These structures release endogenous bradykinin, substance P and 

other tachykinins, atriopeptin(s) and α-calcitonin-gene-related 

peptide (CGRP), which has in turn been correlated to oxygen 

deprivation/redistribution insults and even to IPC adaptation [172-

174]. 

      Epoxy eicosatrienoid acid products of cytochrome P450 

epoxygenases - like the CYP2J2 human cloned isoform [175-176], 

contribute to the endogenously activated anandamide reactive 

cannabinoid receptors on peripheral sensory nerves, showing 

selectivity to capsaicin-vanilloid receptors accompanied by release of 

CGRP [177]. While capsaicin induces a reversible stimulus length 

dependent negative staircase inotropic effect in the rat ventricle, 

without inhibition of its calcium handling [178-179], its anti-arrhythmic 

and anti-ischemic activity has been postulated to act by blocking 
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some K+ and/or Ca2+ channels [180-181], possibly through the 

release of neuropeptides, especially CGRP. Modulation of coronary 

circulation [182], an interplay (in guinea pig heart) between NO and 

CGRP in capsaicin induced increase in coronary flow and heart rate 

[183], and capsaicin related r.h. PC [184] associated with oxygen 

radicals and NO contributions (i.e.: [185]) or pacing induced [186], 

have been reported. (Our preparatory work on cannabinoids vs 

vanilloids, and a contribution on some O2-NO-redox dependent 

structurally covalent post-translational cellular issues are reported in 

[187, 188]). 

 

 

 

1.3. GENERAL AIM OF THE  STUDY  

We present our first paper, divided into two parts, on 

autofluorescence, and the second and third contributions on near 

infrared and NMR spectrometry studies. In this 1st paper, the adult 

r.h. spontaneously beating Langerdorff preparation was used while 

submerged and infused at a constant standard temperature and 

pressure with the widely used crystalloid buffered solution. Three 

sets of control conditions (short preinfusion, long preperfusion, and a 

commonly applied preconditioning protocol) were established in a 

total of 41 hearts, 18 of which were acutely pretreated in vitro at one 

capsaicin saturating dose. All hearts were thereafter subjected to 30 

min global ischemia/anoxia followed by at least 60 min oxygenated 
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reperfusion, while conventional functional parameters were 

continuously monitored. For the fluorescence observations (2nd part), 

3 other control groups and 3 groups of capsaicin-pretreated hearts 

were monitored in the same previously standardized conditions. All 

hearts of all animals sacrificed were used in the experiments. 

       The work first assessed the suitability of the most commonly 

monitored functional parameters to characterize ex vivo, in the 

preconditioned rat heart, early amelioration, protection or delay in 

recovery, following the in vivo original studies (i.e.: [189]) and the 

most recent hypotheses (i.e.: [190]) and contributions, as briefly 

reviewed above.  

 

 

Noninvasive technique(s) were applied to analyze the kinetics of the 

interrelations of the most relevant redox markers - pyridine nucleotide 

fluorescence signals in this first paper. Their unique properties to 

express mito-cytosolic dynamic equilibria will help - it is our aim and 

basic hypothesis - to clarify the feedback interrelations among 

different organ/tissue/cell functional compartments. In particular, the 

optical techniques applied are held to be sufficiently fast to identify in 

a peripheral network of coupled metabolic vs functional adaptations, 

memory acquisition and maintenance processes, substrate/oxygen 

use vs deprivation precursor-product relationships and signaling. Our 

aim is thus to characterize matching of energy demand with respect 

to supply and the related damage vs protection features in the in vitro 
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preparation, after having analyzed some of them in our previous 

studies [191-198]. So, we would like to contribute to a description of 

those steps which, in the native in vitro preparation, are basic to 

modulation of energy availability vs oxygen deprivation processes 

associated with repeated short time insults, particularly in the 

frequency domain control of the metabolic machinery. Last but not 

least, capsaicin specific mechanisms will help clarify some peripheral 

residual short memory acquired adaptations in a model free of other 

neurohormonal and vascular factors [i.e.: 187]. The other 

noninvasive measurements of the metabolic parameters, analyzed 

by near-infrared and NMR spectrometric techniques, both in vivo, as 

well as in vitro capsaicin treatments, will be presented In the next two 

papers, and their modulation in ischemic and reperfusion injuries and 

interference on acute adaptation/attenuation throughout early IPC will 

be more comprehensively elaborated (work in progress). 

 

1.4.  TOPICS NOT ANALYZED 

The second window of protection, i.e. the delayed effects of 

preconditioning (for r.h.: [199-203], for mouse heart [204], and for 

conscious rabbit heart, with different mechanisms shown at 24 vs 72 

hours, [205]), the effects of remote and transferable preconditioning 

([201, 204-208]), and those of the form of modified reperfusion called 

post-conditioning ([[209-210] were excluded from the study.  
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Some preliminary considerations and single heart-data slides have 

been presented in a local Academy Seminar [211]. 

 

2.  MATERIAL AND METHODS 

 

2.1. HEART PREPARATION 

All experiments met the guidelines of the Canadian Council on 

Animal Care regarding the care and use of experimental animals, 

and were approved by the local Animal Committee of the National 

Research Council of Canada. 

      Sprague Dawley rats of both sexes, weighing 250 ± 15 (S.D.) g, 

obtained from Charles River and acclimatized to animal facilities 

were submitted to 12 hour cycles of artificial light at constant 

temperature and relative humidity for at least one week prior to use, 

standard food and water being allowed ad libitum. The rats were 

anesthesized with sodium pentobarbital (120 mg/kg ip), and the 

hearts removed as soon as the toe reflex disappeared (within 3 min), 

immediately immersed in ice-cold buffer and perfused according to 

Langerdorff at 36.5 ± 0.1 °C in less than 30 sec at a constant 

pressure of 80 mm Hg. The Krebs-Henseleit (KH) buffer contained 

(mM) NaCl 118, KCl 4.7, CaCl2 1.75 (free Ca2+ ≈ 1.1), MgSO4 1.2, 

EDTA 0.5, NaHCO3 25 and glucose 11, and was equilibrated at pH of 

7.4 with a 95% N2 and 5% CO2 gas mixture prior to the 95% O2/5% 

CO2 gas mixture. An apical drain was inserted via the mitral valve in 

the left ventricle to vent the drainage from the thebesian veins, and a 
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water-filled compliant balloon was placed into the same ventricle. 

The balloon was connected to a Statham P23Db, or to WPI 

BLPR5326 (Sarasota, FL, USA) pressure transducers to monitor left 

ventricular pressure and heart rate. The left ventricular end diastolic 

pressure was adjusted to the averaged initial % of any maximum 

systolic pressure of 7.5 mm Hg by inflating the balloon, its volume 

being kept constant throughout all experiments. Functional 

parameters were monitored with a Digi MedR Instantaneous Data-

capture and Analysis System (model 200, Micro-Med Inc., Louisville, 

Ky, USA), by sampling at 600 Hz and monitoring the successive 120 

sec arithmetic averages.   

 

 

 

 

 

 

2.2. FUNCTIONAL PARAMETERS 

The first parameter, coronary flow (CF), was followed with an 

ultrasonic blood flow meter (model T101, Transonic Systems Inc., 

Ithaca, New York) standardized by repeated collection of the effluent 

from the heart. Hearts were subjected to periods of global ischemia 

by clamping the perfusion line to the aortic cannula; reperfusion was 

achieved by releasing the clamp; the dead volume of fluid up to the 

aorta was maintained constant and equal to 13.50 ml. Mechanical 
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function was assessed as frequency (BPM), maximum systolic left 

ventricular pressure (MSLVP), and end diastolic left ventricular 

pressure (EDLVP). These parameters were used to obtain: rate 

pressure product; heart rate times left ventricular developed pressure 

(systolic minus diastolic pressure) (RPP); and RPP divided by the 

coronary flow (RPP/CF). The interleaved lengths of unspecified 

arrhythmia were taken into account. The internal heart temperature 

was monitored continuously using a thermocouple (model 39641-T 

Atkins Technology Inc., Gainesville, Florida, USA) placed into the 

pulmonary artery.  

 

2.3. PROTOCOLS 

The three standard sets of assays consisted of controls and in vitro 

capsaicin-pretreated preparations. 

2.3.1. Short perfusion (SP) 

All hearts were observed for 15 min after the start of the perfusion. In 

treated specimens, after oxygenated KH perfusion and monitoring of 

all parameters for 5 min, a capsaicin/DMSO (see below) solution was 

infused through a collateral line at the top of the Langerdorff cannula 

for 5 min; the bathing fluid external to the heart was then substituted 

with control oxygenated, 36.5 °C KH Ringer, whose infusion was 

protracted up to the end of the first step of the SP protocol. The 

second step consisted of 30 min global ischemia and the third step of 

60 min constant pressure oxygenated reperfusion. At the end of the 
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protocol, the heart was removed from the fluid and weighed or frozen 

immediately with Wollenberger clamps precooled with liquid nitrogen. 

2.3.2. Long Perfusion (LP) 

After the first 15 min step, perfusion was continued for an additional 

45 min before ischemia and reperfusion (second and third steps 

unchanged). Long perfusion, from 30 to 60 min, in the isolated r.h. 

perfused with glucose as the only external substrate, has been 

shown to correlate with O2 uptake and decreased mechanical activity 

[212-213]. Osmotic swelling, a key feature of ischemic/reperfusion 

injury, is attenuated by activation of volume regulated chloride 

channels, a candidate for the final step of ischemic preconditioning, 

which is the subject of debate due to contradictory results obtained in 

isolated perfused rabbit heart and isolated cardiomyocytes [1-6]. 

2.3.3. Preconditioning (PC) 

After the first step, three cycles of 6 min global ischemia/anoxia, each 

following the first and the last by 10 min, and the middle by 8 min 

reperfusion, were repeated before the final long ischemia and 

reperfusion. The PC protocol replaced the LP, which acted as the 

most appropriate control. 

     A series of different conditions (i.e.: insults of varying ischemia 

and reperfusion times, from 1 to 10 PC), and final ischemia from 15 

up to 45 min, which may encompass distinct mechanisms of 

regulation of iso-PKCs [214], were also assayed in different groups of 

rats (not included in the presentation) to assess the effect of PC on a 

roughly 50% recovery as evaluated through RPP. Another set of 
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hearts was treated with rising concentrations of DMSO, which is 

known to interfere with myocardial contractility and ischemic 

transients [215]. Capsaicin from 0.1 to 30 µmolar was also assayed 

for one up to 10 min perfusion. 

 

2.4. AUTOFLUORESCENCE 

The direct fluorimetric technique for recording intracellular oxidation-

reduction states (i.e.: [193-194, 217]) was performed using a 

commercial instrument (Ratiometer and Quantimeter Photon 

Technology Int. Inc., S. Brunswick, NJ, USA). The OC-4000 optical 

chopper and the shutter controller were used with a 100 W LPS-220 

Xenon lamp power supply and a 710 photon multiplier system, 

interfaced with Felix software. The 340 nm peak FS10-25, AM28470-

03, and 430 nm peak FS10-25, AM28128-01 (Andover Corporation, 

Salem, NH, USA) excitation and emission filters were used. Even 

though the flavin-ox 436 - 460 excitation vs the 570 - 580 emission 

nm peaks was a possible second channel for time-shared 

observation (i.e.: [194,  217-221], the second interleaved channel 

was used to monitor the light scattering (at 550 nm), which did not 

show any coherent optical changes. At the wavelength used, in the 

glucose-enriched KH perfusate, the surface fluorescence of the intact 

organ has been confirmed to originate from reduced nicotinamide 

nucleotides in mitochondria [222], with a contribution from cytosolic 

exchanges mostly pertaining to modulation by glyceraldehyde 3-
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phosphate- and lactate dehydrogenases (i.e.: [223]), and the NADH 

shuttle system (i.e.: [224]). 

      A custom bifurcated fiber optic bundle (Ceram Optics, Enfield, 

CT, USA) that delivered the UV excitation light to the heart and also 

collected the emitted light was used. The common end of the optic 

fiber was a stainless steel cylinder 5 mm in external diameter at the 

polished optical end. This was placed through a hole in the water 

bath such that the left ventricular wall of the totally submerged heart 

focused at 4 mm distance, which had been adjusted to the best 

signal to noise ratio. The end of the fibers and the surface of the 

ventricle were maintained at a fixed distance with a lucite chamber 

empty of fluid by adjustment of the maximum energy emission. 

     Calibration with NADH in a KH solution confirmed the linearity of 

fluorescence over a wide range of concentrations, including those 

observed in the heart. After initial monitoring of quenching (less than 

10% when observations were performed for 30 sec any 3 min), the 

fluorescence emission was found to be stable (less than ± 5% 

variation) in each heart for as long as 3 hours, the maximum allowed 

for any experiment when the irradiation chopped 3 times/sec. For 

comparisons with the functional parameters, fluorescence emissions 

were averaged up to 120 sec intervals (abscissae), and their values 

(ordinatae) standardized as % between the zero, almost steady, 

initial level and the maximum value, taken as 100%, reached in the 

30 min ischemia. 
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       It should be noted that our approach could not monitor the 

turnover and magnitude kinetics of heterogeneous ischemic areas in 

the perfused r.h., which can be evaluated using advanced imaging 

technologies [225-235]. 

 
 
2.5. STATISTICAL ANALYSIS 

Fluorescence data and single cardiac functional parameter kinetics 

were averaged to achieve coincident steps at 120 sec intervals, and 

their trends were evaluated in the 6 groups. The absolute values of 

the four functional parameters of each heart evaluated as 

independent - CF, ml/min; BPM, Hz or beats/min; MSLVP and 

EDLVP, mm Hg – were averaged as monitored in the first 5 min of 

the standard protocols and normalized as 100%. Differences 

between each percentually transformed variable in control and 

treated preparations were assessed as averages of the subsequent 2 

min kinetic steps using the t test (unpaired, two tailed) applied to 

each next repeated measurement. All data sets, averages, standard 

errors of the means (S.E.) and probabilities (P) for each parameter, 

control vs treated groups, were calculated using the Microsoft Excel 

2000 and SPSS 13.0 statistical packages. Additional evaluation were 

performed with the SPSS 13.0 for Windows full package, and the 

HTM (Microsoft word editable) & PDF formats, as well as the 

proprietary SPSS.SPO (editable with SPSS) format. All data and 

evaluations are presented in the attached files; a few, selected final 

Figures are included into the Results section. 
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2.6. PRODUCTS 

Capsaicin synthetic analog (N-vanillylnonamide RBI, Natick, MA, 

USA; m.w. 293.41, lot VPR-396A) was prepared 60x of the 

corresponding measured CF final 10 µmole, diluted in dimethyl 

sulfoxide (DMSO) (Merck & Co., Inc., Rahway, NJ, USA), final 

0.05%, maintained under nitrogen. All other chemicals were Sigma 

Chem. Co. (St. Louis, MI, USA) reagents. 

 

3.  RESULTS 

 

The means and S.E. of the absolute values of the four functional 

parameters assumed as independent in the 41 hearts of the 6 groups 

are presented in Table I. Figures 1 - 4 show the percentually 

normalized, t test evaluated, related time courses, means and S.E. of 

control vs capsaicin pretreated SP, LP and PC groups (1st 

attachment).  Figures 5 and 6 show the time cources of the means of 

the two calculated, dependent parameters from same attachment. 

Figure 7 reports the specific kinetics of the single measurable 

parameter of the 30 min ischemia applied to all 41 hearts.  
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Table 1 
Absolute values of the 4 functional parameters measured in each rat taken as the average of the 
first 5 min of ex vivo KH Langendorff perfusion. Means and S.E. of the 6 groups and P values of 
the t test (unpaired, two tailed) between control and capsaicin-treated specimens subjected to 
preconditioning  (PC), long  perfusion (LP) or short perfusion (SP). 
 

 
n 

total 
 

 
Groups 

 

 
Coronary Flow 

(CF; ml/min) 
 

 
Frequency 
(BPM; Hz) 

 

 
Maximum Systolic Pressure 

(MSLVP; mmHg) 
 

 
End Diastolic Pressure 

(EDLVP; mmHg) 

 
Preconditioned 

(PC) 

2 

4 

6 

8 

10 

12 

13 

 

Means 

S.E. 

P 

 
n 
 

1 

2 

3 

4 

5 

6 

7 

 

 
 
 
 
 

 
Control 

 

16.3 

16.3 

17.7 

17. 

13.5 

16.3 

17.1 

 

16.31 

0.51 

0.024 

 
n 
 

1 

2 

3 

4 

5 

6 

 

 
Treated 

 

19.4 

21.6 

20.4 

18. 

15.8 

17.7 

 

 

18.8 

0.84 

 
n 
 

1 

2 

3 

4 

5 

6 

7 

 
Control 

 

245.8 

237. 

231.8 

252.1 

267.2 

256.8 

305.2 

 

255.1 

9.1 

0.32 

 
n 
 

1 

2 

3 

4 

5 

6 

 
Treated 

 

246. 

284.2 

313.9 

243.2 

273.4 

258.7 

 

 

269.9 

10.9 

 
n 
 

1 

2 

3 

4 

5 

6 

7 

 
Control 

 

134.7 

131.5 

116.1 

94.3 

114.5 

94.7 

104. 

 

112.8 

6.2 

0.2 

 
n 
 

1 

2 

3 

4 

5 

6 

 
Treated 

 

98.0 

111.9 

82.0 

99.2 

94.9 

124.7 

 

 

101.8 

6. 

 
n 
 

1 

2 

3 

4 

5 

6 

7 

 
Control 

 

5.6 

5.7 

6.5 

8.0 

6.5 

7.9 

7.2 

 

6.8 

0.4 

0.46 

 
n 
 

1 

2 

3 

4 

5 

6 

 

 
Treated 

 

7.7 

6.7 

9.2 

7.3 

7.6 

5.1 

 

 

7.2 

1.2 

 

 
Long Perfusion 

(LP) 
 
 

2 

4 

6 

8 

10 

12 

13 

14 

15 

 

 

Means 

S.E. 

P 

 
n 
 
 
 
1 

2 

3 

4 

5 

6 

7 

8 

9 

 

 
 
 
 
 
 
 
 

 
Control 

 

 

12.5 

13.1 

13.2 

13.9 

13.8 

12.9 

12.6 

13.3 

13.9 

 

 

13.2 

0.2 

0.00034 

 
n 
 

 

1 

2 

3 

4 

5 

6 

 

 
Treated 

 

 

19. 

20. 

15. 

21. 

14.7 

16.1 

 

 

 

 

 

17.6 

1.11 

 
n 
 
 
 
1 

2 

3 

4 

5 

6 

7 

8 

9 

 
Control 

 

 

222.1 

252.1 

269.8 

184.7 

238.3 

247.7 

250.4 

208. 

267.8 

 

 

255.1 

11. 

0.26 

 
n 
 
 
 
1 

2 

3 

4 

5 

6 

 
 
 

 
Treated 

 

 

261.5 

272.8 

221.3 

268.3 

222. 

284.5 

 

 

 

 

 

255.1 

11. 

 
n 
 
 
 
1 

2 

3 

4 

5 

6 

7 

8 

9 

 
Control 

 

 

134.2 

141.6 

124.2 

85.6 

155.3 

121.2 

88.6 

106.5 

101.1 

 

 

117.8 

7.95 

0.11 

 
n 
 
 
 
1 

2 

3 

4 

5 

6 

 
 
 

 
Treated 

 

 

113.2 

91.8 

95.5 

102.9 

108.3 

89. 

 

 

 

 

 

100.1 

3.92 

 
n 
 
 
 
1 

2 

3 

4 

5 

6 

7 

8 

9 

 
Control 

 

 

5.6 

5.3 

6.0 

8.8 

4.8 

6.2 

8.5 

6.9 

7.4 

 

 

6.6 

0.5 

0.05 

 
n 
 
 
 
1 

2 

3 

4 

5 

6 

 

 
Treated 

 

 

6.6 

8.3 

7.9 

11.0 

7.5 

10.1 

 

 

 

 

 

8.5 

0.7 

 
 

2 

4 

6 

8 

10 

12 

13 

 

 

 

 

 

 

15 

17 

19 

21 

23 

25 

26 

27 

28 

 

 

 

 

 

 

 

 

 

30 

32 

34 

36 

38 

40 

41 

 

 
Short 

Perfusion 
(LP) 

 

2 

4 

6 

8 

10 

12 

13 

 

Means 

S.E. 

P 

 
n 
 
 
 
1 

2 

3 

4 

5 

6 

7 

 
Control 

 

 

19.4 

21.5 

19.2 

18.7 

22.3 

19.4 

19.4 

 

19.99 

0.51 

0.089 

 
n 
 
 
 
1 

2 

3 

4 

5 

6 

 

 
Treated 

 

 

22.8 

23.5 

22.2 

19.2 

19.7 

22.1 

 

 

21.58 

0.71 

 
n 
 
 
 
1 

2 

3 

4 

5 

6 

7 

 
Control 

 

 

235.5 

219.4 

225.3 

201.9 

301.7 

280.2 

273.3 

 

248.2 

14. 

0.21 

 
n 
 
 
 
1 

2 

3 

4 

5 

6 

 

 
Treated 

 

 

251.1 

286 

268.3 

237.9 

278.1 

309.8 

 

 

271.9 

10.4 

 
n 
 
 
 
1 

2 

3 

4 

5 

6 

7 

 

 
Control 

 

 

103.5 

112.8 

103.5 

109.1 

99.3 

96.5 

102.4 

 

103.9 

2.1 

0.04 

 
n 
 
 
 
1 

2 

3 

4 

5 

6 

 

 
Treated 

 

 

95.8 

81.6 

101.9 

104.2 

96.7 

91.5 

 

 

95.3 

3.3 

 
n 
 
 
 
1 

2 

3 

4 

5 

6 

7 

 
Control 

 

 

7.3 

6.7 

7.3 

6.9 

7.5 

7.8 

7.4 

 

7.3 

0.1 

0.05 

 
n 
 
 
 
1 

2 

3 

4 

5 

6 

 

 
Treated 

 

 

7.8 

9.2 

7.4 

7.2 

7.7 

8.3 

 

 

7.9 

0.3 



Pharmacologyonline 3: 125-176 (2005)                   Rossini et al. 

 148 

Figure 1 
 
Coronary flow (CF; ml/min). Control (♦) vs capsaicin-pretreated (■) time courses of the 
means of the percent values and of their S.E. Data from 1° attachment. 
 
X axis: consecutive measurement at 2 min intervals. 
Y axis: means of the percent values and their S.E. (vertical bars). 
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Figure 2 
 
Frequency (BPM; Hz). Control (♦) vs capsaicin-pretreated (■) time courses of the means of 
the percent values and of their S.E. Data from 1° attachment. 
 
X axis: consecutive measurement at 2 min intervals. 
Y axis: means of the percent values and their S.E. (vertical bars). 
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Figure 3 
 
Maximum systolic left ventricular pressure (MSLVP; mmHg). Control (♦) vs capsaicin-
pretreated (■) time courses of the means of the percent values and of their S.E.  
X axis: consecutive measurement at 2 min intervals. 
Y axis: means of the percent values and their S.E. (vertical bars). 
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Figure 4 
 
End diastolic left ventricular pressure (EDLVP; mmHg). ). Control (♦) vs capsaicin-
pretreated (■) time courses of the means of the percent values and of their S.E.  
X axis: consecutive measurement at 2 min intervals. 
Y axis: means of the percent values and their S.E. (vertical bars). 
 

 
 

 
 

                                                  
 



Pharmacologyonline 3: 125-176 (2005)                   Rossini et al. 

 152 

Figure 5 
 
Rate pressure product (RPP). Control (♦) vs capsaicin-pretreated (■) time courses of the 
means of the percent values.  
X axis: consecutive measurements at 2 min intervals. 
Y axis: means of the percent values. 
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Figure 6 
Rate pressure product divided by the coronary flow (RPP/CF). Control (♦) vs capsaicin-
pretreated (■) time courses of the means of the percent values.  
X axis: consecutive measurements at 2 min intervals. 
Y axis: means of the percent values. 
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Figure 7 
 

Time course of the sole measurable functional parameter (ischemic contracture) . Kinetic 
trends in the 6 experimental conditions.  
 
X axis: consecutive measurements at 2 min intervals. 
Y axis:  means of the percent values and their S.E. (vertical bars). 
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