STUDY OF A HEPATOPROTECTIVE AND ANTIOXIDANT FRACTION FROM ERYTHRINA SENEGALENSIS STEM BARK EXTRACT: IN VITRO AND IN VIVO

Donfack J.H.¹, Njayou F.N.¹, Rodrigue T.K.², Chuisseu D.D.P.¹, Tchana N.A.¹, Vita Finzi P.³, Tchouanguep M.F.⁴, Ngadjui T.B.², Moundipa F.P.^{1*}

¹Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaounde I (Cameroon).

²Laboratory of Organic Chemistry, Department of Organic Chemistry, Faculty of Science, University of Yaounde I (Cameroon).

³Laboratorio di Chimica delle Sostanze Organiche Naturali., Dipartimento di Chimica Organica, Universita' degli Studi di Pavia (Italy).

⁴Department of Biochemistry, University of Dschang (Cameroon).

Summary

An hydroethanolic extract of Erythrina senegalensis (DC) stem bark was subjected to a bioguided fractionation by repeated chromatographies. In vitro CCl₄-induced hepatitis in rat liver slices was used for the hepatoprotective effect assessment of the obtained fractions while four model systems: 2,4-dinitrophenyl-1-picrylhydrazyl (2,4-DPPH) radical scavenging activities, B-Carotene-Linoleic Acid Model System (B-CLAMS), Ferric-Reducing Antioxidant Power (FRAP) assay and microsomal lipid peroxydation (MLP) were used to measure the antioxidant activity. The fraction called F₃ was found to be the most effective in vitro as indicated by its ability to protect rat liver slices against CCl₄ damage (protection percentage value of 92.77). The fraction also exhibited a strong antioxidant activity in B-CLAMS, FRAP and MLP model system (respective EC₅₀ values of 12.35 ± 1.89 , 10.24 ± 0.89 and 1.47 ± 1.29 µg/mL). The in vivo hepatoprotective effect of fraction F₃ was then studied against CCl₄induced hepatitic damage in rats. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were determined as biochemical indices of injury. CCl₄ (0.6 ml/kg) intoxication resulted in increase levels of serum ALT (101,90±2.92 IU/L) and AST (144.48±9.86 IU/L) compared to respective normal values 23.45±3.13 and 61.41±2.27. Pretreatment of rats with fraction F_3 (25mg/kg, orally) significantly (P < 0.05) reduced the serum levels of ALT (60.95±1.43 IU/L) and AST (89.31 ±3.21IU/L) respectively. Phytochemical studies of the extract revealed the presence of polyphenols and flavonoids, compounds known to be hepatoprotective and antioxidant. These results indicate that fraction F₃ of Erythrina senegalensis extract may be useful as potential hepatoprotective and antioxidant phytomedecine.

Key words: *Erythrina senegalensis*, hepatoprotective activity, antioxidant activity, *in vitro*, *in vivo*

*Corresponding author: Professor Paul F. MOUNDIPA, Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaounde I. E-mail : <u>pmoundipa@hotmail.com</u>. Phone +237 22016043/77310383

Introduction

Current research in many parts of the world focuses on the use of local medicinal plants as liver protective drug sources [1-7]. *Erythrina senegalensis* DC (Fabaceae) is a thorny shrub or small tree with bright red flowers found mainly in Sudanese Savannah regions [8]. The tree is traditionally used by the Bamun population (Western Cameroon tribe) against liver disorders [9]. Previous phytochemical studies reported the isolation from the plant of prenylated isoflavones and flavones along with their antimicrobial and antidiuretic properties and their lack of toxicity [10]. The antiinflammatory , antiplasmodial [11], toxicity and *in vitro* hepatoprotective potential effects [12, 13] of the plant extract have also been investigated. We present in this paper the bioguided isolation and the evaluation of an antioxidant and hepatoprotective activity of a fraction from *Erythrina senegalensis* ethanolic extract.

Materials and methods

Plant material

The stem barks of *Erythrina senegalensis* were collected from Foumban (West Province of Cameroon) in August 2002. The botanical identification of the plant was done at the National Herbarium in Yaounde, where the voucher specimen is conserved under the reference number 35259YA.

Animals

Male wistar albino rats from the Biochemistry Department (University of Yaounde I) animal house weighing 180g- 200g were used for the assays.

Chemicals

All reagents used in the study were of high purity and purchased from SIGMA Chemicals Co. (Dorset, UK) and Prolabo (Paris, France).

Fractionation procedure

The powdered stem bark of *Erythrina senegalensis* (5 kg) was extracted with 20 L of an alcohol/water (40% v/v) mixture for 2 h under reflux. The solvent was removed under reduced pressure to yield 360 g of a dark green residue. A portion of it (355 g) was soaked using n-hexane-ethyl acetate with a continuous gradient (from 95:5 to 60:40, and with pure ethyl acetate), followed by ethyl acetate-methanol mixtures and pure methanol as solvent to give 11 fractions (A, B, C, D, E, F, G, H, I, J, K). These fractions were then tested for hepatoprotective and antioxidant activities. Active fractions were pooled according to their

Pharmacologyonline 1: 120-130 (2008)

similarities provided by thin layer chromatography analysis to give 184 g of material. This mixture (184 g) of products was subjected to silica gel column chromatography and eluted gradually with hexane and hexane-ethyl acetate mixtures to yield 7 fractions (F_1 , F_2 , F_3 , F_4 , F_5 , F_6 , F_7). Their activities were evaluated and were found that the most active fraction was F_3 (6 g). Further separation and purification of this fraction by column chromatography over silica gel eluted with hexane-ethyl acetate (95-5) gave another 6 fractions (F_{31} , F_{32} , F_{33} , F_{34} , F_{35} , F_{36}) and their hepatoprotective and antioxidant activities were also assessed as reported in the following tables.

In vitro and in vivo hepatoprotective activity assay of fractions

In vitro experimental design

The hepatoprotective activity of fractions was tested using carbon tetrachloride-induced hepatitis in rat liver slices by assessing lactate dehydrogenase (LDH) leakage from them by the method of Wormser and Ben [14] as modified by Njayou [12]. Liver slices were intoxicated with carbon tetrachloride (40 mM) and incubated as described previously. The *in vitro* hepatoprotective activity was calculated as:

[1- (LDHdrug - LDHcontrol / LDHCCl₄ - LDHcontol)] X 100

Where LDH is the percentage of lactate dehydrogenase leakage from liver slices.

In vivo exprimental design

The animals were divided into seven groups of five animals each and treated as follows: Group I animals served as normal control and received maize oil (vehicule) 10 mL/kg intraperitonial (ip). Group II animals constituted the hepatotoxic group which, received 0.6 mL/kg CCl₄ suspended in maize oil 12 hours before sacrifice. Group III received silymarin (taking as reference compound) and Group IV, V, VI, VII received the most *in vitro* active fraction (250, 100, 50 and 25 mg/kg) suspended in polyvinyl pyrrolidone (PVP) 1 hour before intoxication with CCl₄ as described in Group II.

At the end of the experimental period, animals were sacrificed by cervical decapitation, blood collected and serum separated for biochemical analyses. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were assayed in serum by the colorimetric test of Rodier and Mallein [15] as toxicity marker enzymes. The hepatoprotective activity was calculated as:

[1- (ALTdrug - ALTcontrol / ALT CCl₄ - ALTcontol)] x 100

In vitro screening of antioxidant activities

Free radical-scavenging activity

Pharmacologyonline 1:120-130 (2008)

The free radical-scavenging activity of fraction was evaluated by assessing their ability to discolorate 2,4-DPPH in methanol according Brand Williams[16]. Each fraction was tested at doses of 25, 50, 100 and 200 μ g/ml. The decrease in absorbance was monitored at 517 nm and exactly 30 seconds after adding the appropriate volume of the extract or methanol to the blank. Then, the percentage of discoloration was calculated for the determination of the EC₅₀.

β-Carotene-linoleic acid model system (β-CLAMS) assay

The β -CLAMS method is based on the discoloration of β -carotene by the peroxides generated during the oxidation of linoleic acid (a free radical chain reaction) at high temperature [17]. In brief, 1 mL of β -carotene (0.02 % w/v) dissolved in CHCl₃ was introduced in a 250 mL round-bottom flask. Linoleic acid (20 μ L) and 200 mg of tween 20 were added to the mixture. CHCl₃ was removed using a rotary evaporator. Fifty mL of distilled water were added and the flask was shaken vigorously until all the material was dissolved. This test mixture was prepared fresh and used immediately. To each spectrophotometric cuvette were added 3 mL of the test mixture and 10 μ L of fraction solution or water (blank). The spectrophotometric cuvettes were incubated at 50 °C for 5 min. Readings were taken at 470 nm immediately after and every 10 min for 3 hours. Four concentrations (25, 50, 100, and 200 μ g/ml) of each fraction were tested and the percentage of inhibition calculated for the determination of the EC₅₀.

Ferric-reducing antioxidant power (FRAP)

The ferric-reducing antioxidant power (FRAP) assay measures the potential of antioxidants to reduce the Fe³⁺/2,4,6-tripyridyl-s-triazyne (TPTZ) complex present in stoichiometric excess to the blue coloured Fe²⁺ form which increases the absorption at 593 nm. This method was used as described by [18]. For each fraction, four concentrations (25, 50, 100, and 200 μ g/ml) were tested and the reducing power calculated for the determination of the EC₅₀

Microsomal lipid peroxydation assays (MLP)

Inhibition of lipid peroxydation was investigated using rat liver microsomes isolated by the calcium aggregation procedure as described by Garle and Fry [19]. Lipid peroxydation was non-enzymatically initiated using ascorbate as described by Ulf *et al.*, [20] and assayed for thiobarbituric acid-reactive substances (TBA-RS) according to Wills [21]. Four concentrations (1, 10, 100, and 200 μ g/ml) of each fraction were tested and the percentage of inhibition calculated for the determination of the EC₅₀.

Calculations and statistical analyses

LDH leakage percentages were analysed by ANOVA using the Graph Pad Prism software and P<0.05 was taken as significant. EC₅₀ values denoted as the concentration of the sample required to scavenge 50% DPPH or to inhibit 50% of another oxidant mechanism were estimated using Graph Pad Prism 3.0.

Results

In vitro fractions hepatoprotective activity

Percentages of protection of rat liver slices against CCl4 toxicity by different fractions are

presented in Table1.

Table 1: Effect of fractions isolated from hydroalcoolic *Erythrina senegalensis* stem bark

 extract on the extent of lactate dehydrogenase leakage *in vitro* after CCl4 challenge.

Extr		-	er slices protection prcentages
	•	•	
T-	27.78±	=01.20** /	
T+	66.69±	=02.54 /	
Si	34.31±	-03.21 83.	21
EH4	0 37.61±	=03.12** 74.	73
А	55.92±	=04.25** 27.	67
В	32.46±	=05.36** 87.	97
С	36.21±	=02.35** 78.	33
D	40.16±	=04.36** 68.	18
E	37.97±	=03.90** 73.	81
F	42.93±	=03.87** 61.	06
G	46.49±	=01.89** 51.	91
Н	57.28±	=01.89* 24.	18
I	54.29±	=02.58* 31.	86
J	67.60±	=04.12 /	
К	47.78±	=02.65** 48.	59
F1	41.90±	=04.26** 63.	71
F2	36.80±	=02.89** 76.	81
F3	30.59 ∃	-01.98** 92.	77
F4	34.16±	:02.48** 83.	60
F5	39.90±	:06.28** 68.	85
F6	42.70±	=00.03** 61.	65
F7	41.76±	=04.13** 64.	07
F31	32.58±	=03.59** 87.	66
F32	33.26±	:02.67** 85.	91
F33	34.38±	=03.59** 83.	03
F34	36.40±	=04.02** 77.	84
F35	36.59±	=02.59** 77.	35
F36	41.89±	=02.49** 63.	73

Values are mean \pm DS of four observations of a triplicate experiment. Values significantly different from CCl₄-treated controls at *p<0.05 **p<0.01. T+: CCl₄-treated controls; T-: vehicule control; Si: Sylimarin (reference compound); EH₄₀: Crude extract; A, B, C, D, E, F, G, H, I, J, K, F₁, F₂, F₃, F₄, F₅, F₆, F₃₁, F₃₂, F₃₃, F₃₄, F₃₅, F₃₆ are different fractions isolated from EH₄₀.

Apart from fraction **J**, the others protected rat liver slices from the toxin damage. The most important hepatoprotective activity found regards the fraction F_3 .

Fractions antioxidant activities

Hydroethanolic *Erythrina senegalensis* stem bark extract fractions were otherwise tested for their antioxidant activities. Four biochemical parameters were use for this estimation: DPPH radical-scavenging activity, β -CLAMS, FRAP assays, and microsomal lipid peroxidation. The results are shown in the **Table 2**.

Table 2: Antioxidant activities of fractions obtained from 40% hydroalcolic *Erythrina* senegalensis stem bark extract

	Biocherr	nical antioxyda	Int parameters (EC	50 µa/mL)
Fractions	DPPH	B Clams	Frap	MLP
Vit C	15.36±1.20	01.25±1.25	08.6.10 ⁻⁴ ±0.007	
Si	35.48±3.20	19.76±4.36	15.99±2.87	40.86±1.28
EH40	57.38±0.69	16.78±3.25	25.28±1.59	21.36±2.57
Α	18.00 ± 1.32	45.68±2.68	55.38±10.17	56.24±1.24
В	54.94±1.25	46.55±2.59	46.95±1.47	60.38±2.49
С	59.76±2.32	35.86±3.17	49.81±.97	13.13±3.48
D	$48.69 \pm .79$	32.00±1.98	47.38±1.24	11.1±3.57
Е	54.62±1.28	25.05±2.89	51.83±2.04	30.96±2.86
F	73.99±3.56	25.98±3.45	34.34±2.17	3.32±1.57
G	44.18±3.24	17.57±2.38	47.15±0.29	18.07±1.27
н	53.67±2.87	21.56±3.49	46.67±0.14	54.1±1.49
I	67.48±0.59	37.66±3.27	54.69±2.17	b
J	37.85 ± 0.45	31.04±4.29	46.51±0.47	С
к	33.05±0.23	38.14±5.28	68.05±1.27	94.62±7.89
F1	72.78±1.25	44.4±3.14	29.39±0.12	30.45±5.67
F2	74.33±2.49	24.8±2.59	23.00±0.79	16.12±4.27
F3	33.27±3.49	12.35±1.89	10.24±0.89	10.47±1.29
F4	41.4±3.49	32.23±2.79	21.37±1.58	70.98±3.57
F5	45.57±1.25	33.89±3.58	18,98±3.478	26.57±0.49
F6	45.85±0.03	37.39±1.58	19.23±1.28	42.53±1.49
F7	56.34±2.48	42.21±3.27	28.65±3.49	36.33±2.49
F31	60.54±3.24	30.42±3.25	20.33±2.47	30.21±2.47
F32	76.02 ± 0.49	29.32±1.89	19.71±1.57	80.63±3.49
F33	45.67±2.17	33.22±2.58	14.00±1.89	20.14±3.479
F34	69.26±1.26	37.83±1.59	20.74±0.25	30.25±2.57
F35	87.35±0.89	30.51±2.89	32.94±1.26	33.25±3.49
F36	89.59±1.25	17.35±3.48	45.77±0.49	42.35±3.49

Values are EC_{50} + SD of different fractions with sylimarin (Si) treat controls. Each EC_{50} value was obtain by testing four doses (25, 50, 100, 200 µg/ml) in a triplicate experiment. Vitc: vitamin C; **b,c**: fractions I and J exhibited no lipid inhibition activities in rat liver microsomes. Optical densities obtained with these fractions were high than in positive controls.

Pharmacologyonline 1:120-130 (2008)

Compared to sylimarin and vitamin C, all fractions possess a dose dependant antioxidant activity even though the antioxidant activity was more pronounced with fraction F_3 .

In vivo F₃ fraction hepatoprotective activity

Group	ALT and AST inc Protection	ALT(IU/L)	AST(IU/L)
Gloup	Percentages (%)		
Control	/	23.450±3.12	61.41±2.47
CCl ₄	/	101.90±2.92 **	144.48±9.86**
Si (100mg/kg)	19.24±2.46	86.80±1.46 *	104.25±2.19*
F3 (25mg/kg)	52.19±4.19	60.95±1.43*	89.31±3.21*
F3 (50mg/kg)	38.55±3.67	71.65±1.76*	100.56±2.40*
F3 (100mg/kg)	26.70±2.48	80.95±1.22*	114.12±2.08*
F3 (250mg/kg)	0.19±1.46	101.75±0.95	133.74±3.42

Table 3: Hepatic protection of different doses from fraction F₃ and sylimarin on CCl₄-induced ALT and AST increase in rats.

Each value represents the mean \pm SD of five rats per group. *p< 0.05 significantly different values from CCl₄-group. **p<0.01 significantly different values from control-group.

As shown in Table 3, administration of CCl₄ (0.6mL/kg IP) resulted in a marked increase of ALT and AST significantly different (p<0.01) from the control group. Pretraitment of rats with different doses (25, 50 and 100 mg/kg) of fraction F_3 and sylimarin (100mg/kg) resulted in the significant reduction of these elevated levels not in dose-related manner. However fraction F_3 was more active (p<0.05) at the dose of 25 mg/kg.

Phytochemical characterisation of fraction F₃

Phytochemical studies of fraction F_3 revealed the presence of flavonoids and polyphenols among others compounds as shown in **Table 4**.

Table 4: Some phytochemical classes compounds of E. senegalensis hydroethanolic extract.

Classes of compounds	F1	Ро	Tr	St	An	Al	Со	Su	Ant	Та
	+	+	-	-	+	-	-	+	+	+

Fl: flavonoids, Po: polyphenols, Tr: Triterpens, St: Sterols, An: Anthocyanins, Al: Alcaloids, Co: Coumarines, Su: Sugars, Ant: Anthranoids, Ta: Tanins. (+): presence of compound; (-): absence of compounds

Discussion

The liver slice system and CCl₄ as toxic were used to assess *in vitro* hepatoprotective effect of Erytrhrina senegalensis stem bark extracts and fractions obtained from it. It is generally accepted that the hepatotoxicity of CCl₄ depend on the cleavage of the carbon-chlorine bond to generate tricloromethyl free radical (.CCl₃); this free radical reacts rapidly with oxygen to trichloromethyl peroxy radical (.CCl₃O₂). This metabolite may attack membrane form a polyunsaturated fatty acids and causes lipid peroxidation which play a main role in the induction of liver injury [3, 22, 23,], which lead to impairment of membrane function. The consequence is the leakage of some cytosolic enzymes including LDH. In our experiments, the *in vitro* hepatoprotective power of a fraction depends on its capacity to prevent LDH leakage from a liver slices. Considering the obtained results, at the dose of 100 µg/ml all fractions significantly (P < 0.01) inhibited LDH leakage from liver slices showing thus their hepatoprotective activities against injuries induced by CCl4. However this parameter was more pronounced with fraction F_3 as shown by its in vitro hepatoprotective percentage (92.77). The DPPH radical-scavenging activity, β-CLAMS and FRAP assays, and microsomal lipid peroxidation are still frequently used by researchers for a rapid evaluation of antioxidant activity [17, 18, 24 - 29]. These systems were thus used for the assessment of the antioxidant activities of fractions. The low values of respective EC_{50} allow us to suggest that all fraction were active in the model systems studied, a part from fraction I and J regarding microsomal lipid peroxydation. However, fraction F_3 shows the lowest EC_{50} values with β -CLAMS, FRAP assays, and microsomal lipid peroxidation respective values of 12.35±1.89; 10.24±0.89 and 10.47±1.29.

These results constitute evidences that fraction F_3 of *Erythrina senegalensis* possess strong antioxidant activities. Interestingly, further fractionation of fraction F_3 gave fractions F_{31} , F_{32} , F_{33} , F_{34} , F_{35} and F_{36} that showed lower activities than that of the parent fraction. This result suggest that the active compound present in fraction F_3 may act in synergy demonstrating that fraction F_3 may be useful as a mixture..

 CCl_4 -induced hepatic injuries are commonly used models for the screening of hepatoprotective plant extract and the extend of hepatic damage is assessed by the level of released cytosolic transaminases including ALT and AST in circulation [3, 6, 5]. When administrated prophylacticaly, fraction F_3 exhibited protection against CCl_4 induced liver injuries as manifested by the reduction of toxin-mediated rise in serum enzymes in rats (**Table 3**) The observed preventive and the *in vitro* antioxidant activities of fraction may be attributed to the presence of polyphenols and flavonoids which have been evidenced, amongst others, as phytochemical constituents of the fraction. In fact, these metabolites are known to be antioxidant and hepatoprotective [30]

Considering the overall results, this study indicates that fraction F_3 shows strong hepatoprotective and antioxidant activities. Accordingly, this mixture of compounds might be useful for the prevention of toxic-induced liver diseases and free radical-mediated diseases since antioxidant compounds have been suggested as prophylactic agent [31 - 34]. Further biochemical and phytochemical studies of this fraction are currently going on in our laboratory.

Acknowledgements

This work was funded by the International Foundation for Sciences through grant N° F/4223 - $\rm IF$

References

[1] Diallo B, Fiegel C, Joyeux M, Rolland et al. Hepatoprotective effects of cochlospermum tinctorium rhizomes, .Identification of some active constituents.In: Fleurentin J, Cabaillon P, Mazarj G, Santos JD, Younos C, editors. Ethnopharmacologie: Sources, méthodes, objectifs. Actes du 1^{er} colloque Européen d'Ethnopharmacologie, Metz: ORSTOM, 1990:351-353.

[2] Muriel P, and Murelle M. J. Prevention by sylimarin of membrane alterations in acute CCl4 liver damage. Appl.Toxicol. 1990;10:275-279.

[3] Gonzalez R, Corcho R, Reminez D, Rodriguez et al. Hepatoprotective effects of Propilis extract on carbon tetrachloride-induced liver injury in rats. Phytotherapy research 1995;9: 114-117.

[4] Yadav NP, and Dixit VK. J. Hepatoprotective activity of leaves of *Kalanchoe pinnata* Pers Ethnopharmacol 2003;86: 197-202.

[5] Agarwal M, Srivastava VK, Saxena KK and Kumar A. Hepatoprotective activity of *Beta vulgaris* against CCl₄-induced hepatic injury in rats. Fitoterapia 2006;77: 91-93.

[6] Aly AAQ, Hassan MM, Badr EHA et al. Protective effect of extract from dates (phoenix dactylifera L.) on carbon tetrachloride-induced hepatotoxicity in rats Inter J Appl Res Vet Med 2004; 176-180.

[7] Kyung JL, Jea HC, Hye GJ. Hepatoprotective and anti oxidant effects of the coffee diterpenes kahweol and cafestol on carbon tetrachloride-induced liver damage in mice. Food and Chemical Toxicology 2007; 45: 2118-2126.

[8] Malgras D. Arbres et arbustes guérisseurs des savanes Maliennes. Publié avec le concours du comité catholique contre la faim et pour le développement: ACCT-KARTHALA.1992:285-287.

[9] Moundipa PF, Njayou FN, Yantitoum S, Sonke B, Tchouanguep FM. Medical plants used in Bamoun region of the western province of Cameroon againts jaundice and other liver disorders Cam.J.Biol.Biochem.Sc. 2002; 12:39-46.

[10] Wandji J, Tanee FZ, Tillequin F, Seguin E, Koch M. Two isoflavones from *Erythrina senegalensis*..Photochemistry, 1994;35:245-248.

[11] Saidu K, Onah J, Orisadipe A, Olusola A, Wambebe C Gamaniel K. Anti plasmodial analgesic and anti-inflammatory activities of the aqueous extract of the stem bark of Erythrina senegalensis. J.Ethnophamacology . 2000; 71: 275-280.

Pharmacologyonline 1 : 120-130 (2008)

[12] Njayou FN, Moundipa FP, Tchana NA; Tchouanguep MF. antihepatotoxic potentials of three bamun folk medicinal plants. Journal of Cameroon Academy of Sciences (supp). J. of Cam. Academy of Sciences (supp). 2004; 4:325-330.

[13] Donfack JH, Njayou FN, Tchana NA, Chuisseu DDP, Ngadjui TB, Moundipa FP. Etude des propriétés hépatoprotectrices et antioxydantes des extraits des écorses d'*Erythrina senegalensis* (Fabaceae) : caractérisation phytochimique et recherche de la toxicité. Biosciences Proceedings 2005; ISSN 1019-7702. 11:229-240.

[14] Wormser U, Ben ZS. The liver slice system: An *in vitro* acute toxicity test for assessment of hepatotxins and their antidotes. Toxicology *in vitro*. 1990; 4:449-451.

[15] REITMAN S, and FRANKEL S: A colorimetric method for the determination of serum oxaloacetic and glutamic pyruvic transaminases. Am. J. Clin. Path. 1957; 28:56-63.

[16] Brand WW, Cuvelier ME, Bers et Lebensm Wiss Tchnol. Use of free radical method to evaluate antioxidant activity. Lebensm Wiss Tchnol 1995; 28:25-30.

[17] Miller HE. A simplified method for the evaluation of anti-oxidant. J. Am. Oil.

J. Am. Oil. Chem. Soc. 1971: 48-91.

[18] Benzie I, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay.Analytical Biochemistry. 1996; 239:70-76.

[19] Garle MJ, Fry JR. Detection of reactive metabolites *in vitro*. Toxicology, 1989;54:101-110.

[20] Ulf AN, Lars IO, Gunnar C; Ann. Christin B. Inhibition of lipid peroxydation by spin labels. The journal of biological chemistry. 1989; 264:11131-11135.

[21] Wills, EO. Evaluation of lipid peroxydation and biological membranes. In: Snell, K. and Mullock, B editor. Biochemical Toxicology. A practical approach series. Press Oxford Washington 1987:127-151.

[22] Recknagel RO, Glende EA. A new direction in the study of carbone tetrachloride hepatotoxicity. Hepatotoxicity Life Sci. 1973; 33: 401-408.

[23] Comporti M Lipid peroxydation and cellular damage in toxic liver injury. Lab.

Lab Invest 1985; 53:599-623.

[24] Gyamfi, MA, Yonamine M, Aniya Y. Gen Pharmac. Free radical scavenging action of medicinal herbs from Ghana Thonningia sanguinea on experimentally induced liver injuries. General Pharmacology.1998; 32: 661-667.

[25] Aniya, Y Myagmar, BE. Free radical scavenging action of medicals herbs from Mongolia. Phytomedecine 2000; 7(3):221-229.

[26] Gardner PT, Whites TAC, B and Duthie G D. The relative contribution of vitamin C, carotenoids and phenolics to the antioxidant potential of fruit juices. Food chem. 2000; 68:471-474.

[27] Czinneka E, Hagymasib K, Blazovisb A, Szkea E, Lemberkovics E. The in vitro effect of Helichrysi flos on microsomal lipid peroxidation. Ethnopharmacol. 2001; 77:31-35.

[28] Gil MI, Thomas BFA, Heiss PB, Kader AA. Antioxidant capacities, phenolic compounds, carotenoids and vitamin C contents of nectarine, peach and plums cultivars from California. J. Agric. Food Chem. 2002; 50:4976-4982.

[29] Tsao R, Sockovie E, Zhou T, Dale A. Antioxidant phytochemicals in Cultivated and Will Canadian Strawberries, Acta Horticulturae, 2003;626:25-36.

[30] Middleton M J R, Chithan K , Theoharis CT. The effect of plant flavonoids on mammalian cells: implications on inflammation, heart disease and cancer. Pharmacol. Rev. 2000;52: 673-751.

[31] Aruoma, OI.. Extracts as antioxidant prophylactic agents. INFOR 1997; 8(12):1236-1242.

[32] Aruoma OI. Free radicals, oxidative stress and antioxidants in human health and disease. JAOCS 1998;75:199-212.

[33] Faure M, Torres R, Vidella LA. Antioxydant activities of lignan and flavonoids. Phytochemistry 1990; 29:3773-3775.

[34] Halliwell B Food –derived antioxidants. Evaluating their importance in food and *in vivo*. Food Sci.Agri.Chem. 1999; 1:67-109.