ANTI-MICROBIAL STUDIES ON NOVEL 1, 3-OXAZOLIDINE ANALOGS

Vachala Dinakaran¹*, Jessy E. Mathew¹, Panneerselvam P², Sivagurunathan³

¹ Department of Pharmaceutical Chemistry, MCOPS, Manipal, Karnataka.

² Department of Pharmaceutical Chemistry, C.L.Baid Metha College of Pharmacy,

Chennai, Tamil Nadu.

³ Department of Pharmaceutical Biotechnology, MCOPS, Manipal, Karnataka.

Summary

In present study several substituted 1, 3-oxazolidines were synthesized by condensation of reduced Schiff base of phenylglycinol with different aldehydes. All the synthesized compounds showed good to moderate antimicrobial activity. The antimicrobial activites were performed by disc diffusion method and minimum inhibitory concentration determination by serial agar dilution method. Thus among the ten compounds, 3-[3-2furyl methyl)-4-phenyl- 1,3-Oxazolidin-2-yl]-¹H-indole (4a), 2-(2-furyl)-3-(2-furyl) methyl)-4-phenyl-1,3-Oxazolidine (4b) and 4-[3-(2-furylmethyl)-4-phenyl-1,3oxazolidin-2-yl]-2-methoxy phenol (4h) were found to have a moderate to significant antimicrobial activity against all the strains used. Compound 2-(4-chlorophenyl)-3-(2furylmethyl)-4-phenyl-1, 3-oxazolidine (4j) showed very good antifungal activity than the other compounds tested. Further more, compounds containing -Cl⁻, -OCH₃, -OH groups as substituents were found to be potent antimicrobial agents. Moreover the heteroaromatic substitutions also showed very good antimicrobial activities.

Key words: synthesis, oxazolidines, antibacterial, antifungal, aldehydes

* For Correspondence
S.D. Vachala, M.Pharm.,
Department of Pharmaceutical Chemistry
Manipal College of Pharmaceutical Sciences
Manipal 576 104
Karnataka
India.
Phone: (0820) 2922482
Extn: 138
Fax : 91-0820-2571998
E.mail:sdvachu@yahoo.com

Introduction

1, 3-oxazolidine derivatives have been found to be associated with several biological activities like antimicrobial (1-4), antiarrhythmic (1), anti-tumor (1), antidiabetic (5), anticonvulsant (6) and antihypertensive activity (7). Linezolid, a 1,3-oxazolidine derivative which has been used clinically since 2000 for treating infections caused by terminal Gram(+) organisms. However, toxicity as well as emergence of resistance in some patients receiving prolonged treatment has been reported. A number of attempts have been made by various research groups to obtain potent and safe analogs without much success. Multi drug resistance among the pathogens represents a serious challenge for health practitioners in treating both nosocomial and community acquired infections (8). The continued rise in microbial resistance has called for antimicrobial agents to be developed that are effective against resistant strains.

This observation prompted us to synthesis some novel 2-substituted-1, 3-oxazolidine derivatives and to evaluate their antimicrobial activities. In this present study, a new series of 2-substituted 1, 3-oxazolidines were synthesized by condensation of different aldehydes with reduced Schiff base of phenylglycinol. All the compounds were characterized by spectral and elemental analysis data. For these compounds, antimicrobial activities and minimum inhibitory concentration were done by disc diffusion and agar streak serial dilution method.

Materials and Methods

Test organism and drugs used

Pure cultures of test organisms *Staphylococcus aureus* (ATCC 9144), *Staphylococcus epidermidis* (ATCC 155), *Micrococcus luteus* (ATCC 8341), *Klepsiella pneumonia* (ATCC 29665), *Escherichia coli* (ATCC 25922), *Candida albicans* (ATCC 2091) and *Aspergillus niger* (ATCC 9029) were procured from the central drugs laboratory (Kolkata, India). All the organisms were maintained on agar slant stocks and were subsequently sub cultured into newly prepared nutrient agar slants. Ciprofloxacin (Dr. Reddy's Lab, Batch no: 1C 666E04, India) was used as a standard in antibacterial studies and ketokonazole was used as a standard in antifungal studies.

Antimicrobial activity

The newly synthesized compounds were screened for their antimicrobial activity by disc diffusion method (9). The sterilized (autoclaved at 120° C for 30 minutes) medium (nutrient agar for antibacterial activity and sabouraud dextrose agar media for antifungal activity) was inoculated with the suspension of microorganism (1ml/100ml of medium) and poured into a Petri dishes to give a depth of 3-4mm. The discs (previously sterilized in UV lamp) impregnated with the test compounds were placed on the solidified medium. The stock solution of test compounds was prepared at 100µg/ml in DMSO. The plates were preincubated for 1h at room temperature. The plates containing bacteria were incubated at 37°C for 24h and those containing fungi were incubated at 37°C for 48h.

Ciprofloxacin and ketokonazole were used as standard drugs for antibacterial and antifungal studies respectively. The zone of inhibition was measured and the values were represented in table-1.

Minimum inhibitory concentration

The minimum inhibitory concentration (MIC) of the synthesized compounds was found by agar streak serial dilution method (10). A stock solution of the synthesized compound in dimethylformamide ($10\mu g/ml$) was prepared and graded quantities of the test compounds were incorporated in specified quantity of molten sterile agar (nutrient agar for antibacterial activity and sabouraud dextrose agar media for antifungal activity). Specified quantity of the medium containing the compound was poured into a petri dish to give a depth of 3-4 mm and allowed to solidify. Suspension of the micro organism was prepared to contain approximately 10^5 cfu/ml and applied to plates with serially diluted compounds in dimethylformamide to be tested. The observed MIC values were presented in Table-2.

Results and discussion

The novel 2-substituted-1, 3-oxazolidines were synthesized by the reaction of reduced Schiff base of phenylglycinol under reflux conditions with the appropriate aldehydes in toluene. The structures of the compounds were given in Figure 1.

Figure-1

2-substituted-3-(2-furyl methyl)-4-phenyl-1,3-Oxazolidine

Vachala *et al*.

COMPOUND	R	COMPOUND	R	
4a	T _{ZT}	4f		
4b		4g	-√_>−осн₃	
4c		4h	ОСН3	
4d	HO	4i	- Он	
4e	NO ₂	4j	- С- сі	

The compounds were tested in vitro for their antimicrobial activity against seven microorganisms belonging to bacteria and fungi classes. It was observed that all the compounds showed moderate to potent antimicrobial activity. The antimicrobial activity was done at 100μ g/ml concentration by disc diffusion method. The data were given in table-1.

Table 1	l · Antii	nicroh	ial activ	ity of th	e synthesize	d compoi	inds at '	100ug/m1
	I. Anu	merou	at activ	ny or m	e synthesize	u compoi	inus ai	rooµg/m.

cpd	Invitro antibacterial activity-Zone of inhibition (mm)							
	S.aureus	S.epidermidis	M.luteus	K.pneumoniae	E.coli	C.albicans	A.niger	
	ATCC	ATCC	ATCC	ATCC	ATCC	ATCC	ATCC	
	9144	155	4678	29665	2592	2091	9020	
4a	27	28	31	25	28	17	33	
4b	28	23	31	23	20	17	28	
4c	12	14	16	17	31	15	33	
4d	23	25	25	22	21	16	32	
4e	26	27	28	22	17	16	30	
4f	22	28	25	25	23	16	28	
4g	26	25	32	24	19	15	26	
4h	28	28	30	25	23	19	32	
4i	23	30	22	24	23	15	31	
4j	22	32	27	24	19	19	35	
CFN	29	33	35	27	31	-	-	
KKZ	_	-		-	-	22	36	
DMF	-	-	-	-	-	-	-	

CFN Ciprofloxacin; KKZ Ketokonazole; DMF Dimethylformamide; ATCC American Tube Culture Collection

Vachala *et al*.

Minimum inhibitory concentration was performed by agar streak serial dilution method against all organisms used and the data were given in Table-2.

cpd	Minimum inhibitory concentration (µg/ml)								
	S.aureus	S.epidermidis	M.luteus	K.pneumonia	E.coli	C.albicans	A.niger		
	ATCC	ATCC	ATCC	ATCC	ATCC	ATCC	ATCC		
	9144	155	4678	29665	2592	2091	9020		
4a	16	24	14	27	08	16	09		
4b	12	29	13	25	19	03	23		
4c	35	33	34	39	03	25	10		
4d	30	26	21	31	17	21	15		
4e	19	19	18	30	29	21	19		
4f	31	21	20	24	11	18	22		
4g	17	25	11	29	19	24	31		
4h	10	22	15	25	12	12	14		
4i	31	16	25	21	15	30	12		
4j	32	14	19	23	20	15	05		
CFN	03	02	02	02	03	-	-		
KKZ	-	-	-	-	-	01	03		
DMF	-	-	-	-	-	-	-		

 Table 2: Minimum inhibitory concentration of synthesized compounds

CFN Ciprofloxacin; KKZ Ketokonazole; DMF Dimethylformamide; ATCC American Tube Culture Collection.

From the results, compounds 3-[3-2-furyl methyl)-4-phenyl- 1,3-Oxazolidin-2-yl]-¹Hindole (4a), 2-(2-furyl)-3-(2-furyl methyl)-4-phenyl-1,3-Oxazolidine (4b) and 4-[3-(2furylmethyl)-4-phenyl-1,3-oxazolidin-2-yl]-2-methoxy phenol (4h) were found to have a moderate to significant antimicrobial activity against all the strains used. Compound 2-(4chlorophenyl)-3-(2-furylmethyl)-4-phenyl-1,3-oxazolidine (4j) showed very good antifungal activity than the other compounds tested. From the observed MIC values of the compounds, it can concluded that the hetero aromatic and 4-hydroxy, 3-methoxy or 4chloro containing phenyl substitutions showed distinct antimicrobial activity that is independent of other substitutents.

Therefore the above said compounds can serve as lead molecules for further modification to obtain clinically important or beneficial antimicrobial agents.

References

1. Kamlesh S, Kishwar S , Anwar S. Stereo selective formation of steroidal (6R)-spiro oxazolidines. Indian J Chem 2003; 42B :2866-2868.

- 2. Adnan A.Bekhit, Hesham T.Y.Fahmy. Design and synthesis of some substituted 1Hpyrazolyl-oxazolidines or 1H-pyrazolylthiazolidines as Anti-inflammatory-Antimicrobial Agents. Archiv der Pharmazie 2003; 336:111-118.
- 3. James R.G, William R.P, Toni-Jo P, Richard C.T. Stereo divergent synthesis of sulfoxide containing antibiotics. Tetrahedron Lett 2000; 41:4301-4305.
- 4. Neha G, Brijesh K.S, Vidya B.L, Braj B.L. Oxazolidines-2-thiones: a molecular modelling study. Tetrahedron Lett 2004; 45:6269-6272.
- 5. Heong S.O, Hoh-Gyu H, Seung H.C, Deok-Chan H. Solid phase synthesis of 1,3oxazolidine derivatives. Tetrahedron Lett 2000; 41:5069-5072.
- 6. Susan B, editor. The Merck Index: An encyclopedia of chemical drugs and biologicals. 11th ed. Merck and co Inc, USA (1989) 2342, 3204.
- 7. Caroon J.M, Clark R.D, Kluge A.F, Lee H.C, Strosberg A.M. Synthesis and antihypertensive activity of a series of spiro [1,3,4,6,7b-hexahydro-2H-benzo [a] quinoline-2,5'-oxazolidin-2'-ones]. J Med Chem 1983; 26:1426-1433.
- David C.Ebner, Jeffrey C.Culhane, Tyler N.Winkelman, Mitchell D.Haustein, Jayna L.Ditty, J.Thomas Ippoloti. Synthesis of novel oxazolidinone.antimicrobail agents. Bioorg.Med.Chem 2008; 16(5): 2651-2656.
- 9. Indian Pharmacopoeia, 2nd ed. Vol. II. Controller of Publication, New Delhi (1996) 100.
- 10. Hawkey PM, Lewis DA. Medical Bacteriology-A Practical Approach. Oxford University, UK (1994) 181.