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Summary 

 
     This study aimed to investigate whether I.P. treatments with 

vitamin E (100 mg/kg), L-carnitine (300 mg/kg) and melatonin (10 
mg/kg) can protect against CCl4/diabetes induced hepatic oxidative 
stress in the same manner or not. It was performed in Wistar rats as a 
comparison between two different models by 50% v/v CCl4 (1 ml/kg, 3 
days, I.P.) in the first model and by STZ (40 mg/kg, I.P.) induced 
diabetes mellitus in the second model over 6 weeks. The results 
obtained were surprising and antioxidants showed different responses 
in the two models. In CCl4-treated rats, melatonin was found to be the 
most effective treatment, while vitamin E was found to be the least 
effective treatment. In STZ-treated rats, vitamin E showed significant 
attenuation than CCl4-treated rats, followed by melatonin and L-
carnitine as indicated by the changes in liver function tests, 
malondialdehyde (MDA) content, reduced glutathione (GSH) content, 
superoxide dismutase (SOD) activity in liver, and serum total 
antioxidant capacity (TAC) level. In conclusion these data indicate the 
beneficial effects of antioxidants, especially melatonin against 
oxidative stress and hepatic disorders induced by CCl4 and to less 
extent diabetes. Moreover, the potent effect of vitamin E in reducing 
hepatic oxidative stress induced by diabetes, which can be linked not 
only to the antioxidant actions of vitamin E, but also to the superior 
effect in reducing diabetes-induced hyperglycemia. Finally, same 
antioxidants can have varying responses in different models of 
oxidative stress.  
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Introduction 
 

 Oxidative stress has been implicated in the etiology of different diseases 
including cardiovascular diseases, cancer, neuro-degenerative diseases, ischemia-
reperfusion injury, rheumatoid arthritis, aging, and has recently been shown to be a 
major contributor to liver damage in many situations such as liver fibrosis and diabetes 
mellitus. Oxidative stress is characterized by excess formation and insufficient removal 
of highly reactive species that can be damaging for liver at high concentration [1].  

           Carbon tetrachloride (CCl4) has been used drastically to induce liver injury and 
fibrosis in various experimental models and to elucidate the mechanisms behind 
hepatotoxicity. The mechanism underlying the CCl4 hepatoxicity involves oxidative 
stress induced by CCl4-derived reactive free radical metabolites [2]. Diabetes mellitus 
is a metabolic disorder characterized by hyperglycemia and insufficiency of action or 
secretion of endogenous insulin. Increased glucose flux both enhances oxidant 
production and impairs antioxidant defenses by multiple interacting pathways, such as, 
glucose autooxidation, protein glycosylation, polyol pathway, activation of protein 
kinase C and hexosamine pathway [3]. 

            Vitamin E is the most important lipid soluble antioxidant in biological systems. 
The major store of membrane bound vitamin E is in the inner mitochondrial 
membrane, where it is used for electron transport and prevents oxidation of various 
compounds such as polyunsaturated fatty acids [4]. L-carnitine is an essential cofactor 
in the transport of long-chain fatty acids from the cytosol to mitochondria for 
subsequent β-oxidation and production of cellular energy, and was also reported to 
possess antioxidant properties [5]. Melatonin is a lipophilic indoleamine derived from 
tryptophan. It is principally secreted at night and is centrally involved in sleep 
regulation and is often called the hormone of darkness. Melatonin, as well as its 
metabolites possesses redox properties due to the presence of an electron rich system 
allowing these molecules to act as electron donors [6].  

       The aim of the present study whether treatments with vitamin E (100 mg/kg), L-
carnitine (300 mg/kg) and melatonin (10 mg/kg) can protect against CCl4 and diabetes 
induced hepatic oxidative stress in the same manner or not.  

 

Materials and Methods 
Drugs and Chemicals 

    STZ was purchased from MP Biochemicals (Irvine, CA, USA). Melatonin (N-
acetyl-5-methoxytryptamine), Vitamin E (DL-α-Tocopherol acetate) and L-carnitine 
(β-hydroxy-γ-N-trimethyl ammonium- butyrate) were purchased from Sigma-Aldrich 
(St Louis, MO, USA). Other chemicals were of the highest quality available. 
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Animals 
 Adult male Wistar albino rats (170-230 g) were purchased (Research Institute 

of Ophthalmology, Giza, Egypt) and kept under constant conditions for food, water, 
light and temperature throughout the experimental period. All animals were 
acclimatized for 1 week prior to experimentation and received humane care in 
compliance with the national institutes of health criteria for care of laboratory animals. 
Experimental Design 
        Rats were randomly divided into 10 groups (20 rats per group) except for CTRL 
and CTRL2 (10 rats per group). Intraperitoneal route was used in all administrations 
and any drug treatment was given daily at 5:00 pm.    In the first model , Liver cell 
injury and fibrosis were induced by injecting 50% v/v CCl4 in olive oil (1ml/kg) every 
3 days at 11:00 am. In the second model, experimental diabetes was induced by 
injection of STZ (40 mg/kg) prepared in cold citrate buffer (0.1 M, pH: 4.5). After 3 
days, rats with blood glucose levels greater than 300 mg/dL were accepted to be 
diabetic.  
 1-CTRL:  Rats were injected with olive oil (1 ml/kg) every 3 days. 
2-CCl4: Received CCl4 alone.  
3-CCl4 + E: Received CCl4 + vitamin E (100 mg/kg) dissolved in olive oil. 
4-CCl4 + LC: Received CCl4 + L-carnitine (300 mg/kg) dissolved in physiological 
saline.  
5-CCl4 + M: Received CCl4 + melatonin (10 mg/kg) suspended in 1% v/v absolute 
ethanol and 1% w/v gum tragacanth in physiological saline to prolong its absorption as 
it is rapidly metabolized. 
6-CTRL 2: Control non-diabetic rats received citrate buffer and after 3 days, 
physiological saline (1 ml/kg).  
7- STZ: Untreated diabetic rats + physiological saline (1 ml/kg). 
8-STZ + E: Diabetic rats + vitamin E (100 mg/kg).  
9-STZ + LC: Diabetic rats + L-carnitine (300 mg/kg).  
10-STZ + M: Diabetic rats + melatonin (10 mg/kg). 

        After 6 weeks, rats were fasted overnight and at the following morning, rats were 
anesthetized by thiopental (70 mg/kg) and blood samples were withdrawn for serum 
preparation. Liver was isolated and homogenized (20 mM Tris, 1mM EDTA, HCl pH 
7.4) using a glass homogenizer. Homogenate was centrifuged (6000 r.p.m, 4 ºC, 15 
minutes) and supernatant was used immediately for assay of MDA, GSH and SOD. 

Biochemical Analysis 
         Serum glucose, alanine aminotransferase (ALT)/aspartate aminotransferase 
(AST), alkaline phosphatase (ALP) and Protein in liver homogenate were determined 
according to the methods described respectively [7,8,9,10]. Hepatic MDA content was 
measured by the thiobarbituric acid method [11].  
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Hepatic GSH was determined according to DTNB method that is based on reduction of 
Ellman’s reagent by GSH [12]. Hepatic SOD activity was determined according to the 
method that is based on the fact that one unit of SOD can inhibit the oxidation of 
pyrogallol by 50% [13]. Serum TAC was assay based on elimination of certain amount 
of the provided H2O2 by antioxidants present in the sample and reaction of residual 
H2O2 with 3,5-dichloro-2-hydroxy benzene sulfonate and 4-aminoantipyrine in the 
presence of peroxidase enzyme producing a colored chromogen that can be measured 
at 505 nm and is inversely proportional to TAC concentration [14]. 

Statistical Analysis 
Data were expressed as means ± SEM for the animals in each experimental 

group. Statistical evaluation of the results was carried out by means of one way 
analysis of variance, followed by Tukey-Kramer multiple comparison test, when 
appropriate. Statistical tests were performed with GraphPad Instat V 3.05 (GraphPad 
Software Inc, San Diego, CA, USA).  

 
 

Results 
 
Table 1. Effects of vitamin E, L-carnitine and melatonin treatments on serum 
glucose Concentration, ALT, AST and ALP activities in model I 

 
Remaining 

CTRL 
(n=10/10) 

CCl4 
(n=8/20) 

CCl4 + E 
(n=10/20) 

CCl4 + LC 
(n=10/20) 

CCl4 + M 
(n=13/20) 

Glucose 
(mg/dL) 130.4 ± 4.84 116.4 ± 7.63 115.4 ± 7.20 103.5 ± 3.79* 117 ± 4.76 

ALT 
(U/ml) 24.59 ± 3.23 193.2 ± 11.30*** 138.9 ± 16.92***, a 98.82 ± 17.51***, c 67.99 ± 8.21 *, c, 3 

AST 
(U/ml) 62.06 ± 4.73 474.8 ± 29.09*** 237.2 ± 20.10***, c 127.6 ± 8.31*, c, 3 151 ± 13.94 **, c, 2 

ALP 
(IU/L) 145.7 ± 14.98 289.5 ± 27.20*** 202.4  ± 23.04 a 186.7 ± 25.85a 137.2 ± 8.77 c 

 *, ** and ***  Significantly different from CTRL at P < 0.05, P < 0.01 and P < 0.001 respectively. 
 a, b and c Significantly different from  CCl4 at P < 0.05, P < 0.01 and P < 0.001 respectively. 
 1, 2 and 3 Significantly different from  CCl4+E at P < 0.05, P < 0.01 and P < 0.001 respectively. 
 4 Significantly different from CCl4+LC at P < 0.01. 
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Fig. 1. Effects of vitamin E, L-carnitine and melatonin treatments on hepatic MDA 
content (A), hepatic GSH content (B), hepatic SOD activity (C) and serum TAC level 
(D) in model I 
 *, ** and ***  Significantly different from CTRL at P < 0.05, P < 0.01 and P < 0.001 

respectively. 
 a, b and c Significantly different from  CCl4 at P < 0.05, P < 0.01 and P < 0.001 respectively. 
 1, 2 and 3 Significantly different from  CCl4+E at P < 0.05, P < 0.01 and P < 0.001 

respectively. 
 4 Significantly different from CCl4+LC at P < 0.01.  

 
 

 
 
 
 
 
 

(A) (B)

(C) (D)
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Table 2. Effects of vitamin E, L-carnitine and melatonin treatments on serum 
glucose Concentration, ALT, AST and ALP activities in model II 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Remaining 
CTRL 2 
(n=10/10) 

STZ 
(n=7/20) 

STZ + E 
(n=11/20) 

STZ + LC 
(n=10/20) 

STZ + M 
(n=10/20) 

Glucose 
(mg/dL) 101 ± 7.35 374.3 ± 36.67*** 232.5 ± 20.38**, b 254.2 ± 25.7***, a 298.1 ± 23.52*** 

ALT 
(U/ml) 21.33 ± 2.25 157 ± 15.97*** 22.91 ± 2.42 c 92.34 ± 10.01***, c, 3 48.80 ± 5.07  c, 4 

AST 
(U/ml) 63.78 ± 3.76 196.7 ± 13.04*** 97.5 ± 6.44 c 126.4 ± 10.84***, c 113.5 ± 13.37**, c 

ALP 
(IU/L) 169.8 ± 10.54 448.8 ± 45.54*** 303.3 ± 28.31**, b 368 ± 27.79*** 263.7 ± 23.49 c 

 *, ** and *** Significantly different from  CTRL 2 at P < 0.05, P < 0.01 and P < 0.001 respectively. 
 a, b and c Significantly different from STZ at P < 0.05, P < 0.01 and P < 0.001 respectively. 
 1, 2 and 3 Significantly different from  STZ+E at P < 0.05, P < 0.01 and P < 0.001 respectively. 
 4 Significantly different from  STZ+LC at P < 0.01. 
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Fig. 2. Effects of vitamin E, L-carnitine and melatonin treatments on hepatic MDA 
content (A), hepatic GSH content (B), hepatic SOD activity (C) and serum TAC level 
(D) in model II 
 *, ** and *** Significantly different from  CTRL 2 at P < 0.05, P < 0.01 and P < 0.001 
respectively. 
 a, b and c Significantly different from STZ at P < 0.05, P < 0.01 and P < 0.001 respectively. 
 1, 2 and 3 Significantly different from  STZ+E at P < 0.05, P < 0.01 and P < 0.001 
respectively. 
 4 Significantly different from  STZ+LC at P < 0.01. 

 
Discussion 

        Although, many studies have investigated the effects of antioxidants on 
solitary models, there is no study compared between certain antioxidants effects in 
many concomitant models until now. In CCl4 model, the activities of liver function 
tests (Table 1) and hepatic MDA content (Figure 1A) were highly elevated as a result 
of CCl4 metabolism to highly toxic radicals such as trichloromethyl radical (●CCl3) and 
trichloromethyl peroxyl radical (●OOCCl3) [2].  

(A) (B)

(C) (D)
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●CCl3 is responsible for the covalent binding to cell components resulting in 
inhibition of lipoprotein secretion, steatosis and cancer, while ●OOCCl3 is responsible 
for lipid peroxidation resulting in impairment of cellular functions dependent on 
membrane integrity, loss of calcium homeostasis, apoptosis and cell death [15]. 
Vitamin E treatment slightly decreased the elevated activities of liver function tests 
and hepatic MDA content. It was reported that vitamin E did not react at comparable 
rates with carbon-centered radicals and did not block ●CCl3-induced covalent binding 
resulting in inhibition of secretion of lipoproteins [15,16]. Cardioprotective effects of 
L-carnitine treatment decreased AST more pronouncedly than other treatments [17]. L-
carnitine decreases lipid peroxidation by stimulating β-oxidation in an early phase and 
hinders the effect of CCl4 on mitochondrial functions [18]. Melatonin is a potent trap 
of ●OOCCl3 [19]. Accordingly, it decreased elevation of liver function tests and 
hepatic MDA content greater than vitamin E and L-carnitine treatments.  

        GSH content in liver homogenate, an index of non-enzymatic antioxidants, 
was found to be decreased as a result of CCl4 administration (Figure 1B).  ●CCl3 reacts 
with sulfhydrl groups resulting in depletion of GSH and protein thiols [20].  In 
addition, hepatic transulphuration pathway is impaired in fibrosis hindering the 
conversion of methionine to cysteine, whichis necessary for GSH synthesis [21]. L-
carnitine treatment showed a significant elevation in hepatic GSH content, which can 
be attributed to the energy enhancing action of L-carnitine through increasing ATP 
needed for synthesis of GSH [22]. Melatonin treatment showed superior elevation in 
hepatic GSH content than other treatments due to stimulation of γ-glutamylcysteine 
synthase and potentiation of GSH recycling by increasing GSH-reductase [23]. 

     SOD activity in liver homogenate, one of the indices of enzymatic antioxidants, 
was found to be decreased as a result of injection of CCl4 (Figure 1C). Depletion of 
hepatic SOD content can be attributed to the burst of oxygen-free radicals (OFRs) that 
occurs during the hepatic damage development, which lead to consumption of SOD 
[24].  Melatonin treatment showed superior increase in hepatic SOD activity than 
vitamin E and L-carnitine treatments suggesting that melatonin has indirect antioxidant 
actions through stimulating the activities of antioxidant enzymes, such as SOD, GSH-
peroxidase and GSH-reductase and direct through dismutation of superoxide anion 
radical (O2

●–)  [25].  

      In STZ-induced diabetes model, vitamin E treatment of diabetic rats showed a 
significant reduction in serum blood glucose level indicating that vitamin E may have a 
role in preventing hyperglycemia (Table 2). It has been proposed that vitamin E may 
have a role in modulating insulin action [26]. Moreover, vitamin E administration 
resulted in protein kinase C inhibition due to the direct interaction between α-
tocopherol and protein kinase C in the cell membrane [27].  
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L-carnitine treatment showed a slight reduction in serum glucose level of diabetic 
rats. L-carnitine improves pyruvate dehydrogenase activity, decreases acetyl CoA/CoA 
ratio and activates phosphofructokinase in the glycolytic pathway resulting in glucose 
flux increase [28,29]. Serum transaminases in diabetic rats were found to be highly 
elevated in comparison with non-diabetic rats. This can be attributed to the excessive 
free fatty acids formation, which is known to be directly toxic to hepatocytes [30]. It is 
also hypothesized that the elevation in ALT, a gluconeogenic enzyme whose gene 
transcription is suppressed by insulin, could indicate impairment in insulin signaling 
rather than purely hepatocyte injury. In contrast, AST activity was unrelated to 
changes in hepatic insulin action [31]. The present study showed that Vitamin E 
treatment significantly reduced serum ALT activity in diabetic rats when compared to 
L-carnitine and melatonin. Accordingly, the decrease in serum glucose due to vitamin 
E treatment may provide improvement in hepatocellular function, hepatic insulin 
resistance and glucose output. 

   MDA in liver of diabetic rats used in this study was found to be elevated (Figure 
2A). This can be attributed to the overproduction of OFRs which could be due to their 
increased production or decreased destruction. Glucose can increase OFRs through 
glucose autoxidation and through non-enzymatic protein glycation. The oxidative 
degradation of these oxidants could participate in the formation of lipid peroxidation 
products [32]. Vitamin E treatment showed a significant reduction in serum activities 
of liver function tests and hepatic MDA content in model II greater than model I. 
Vitamin E prevents chain reaction of lipid peroxidation by reacting with peroxyl 
radical and trapping LOO●, the primary product of peroxidation [33].  

       GSH in liver of diabetic rats was found to be decreased as shown in Figure 2B. 
Since, the hexose monophosphate shunt is impaired in diabetes, NADPH availability is 
reduced and the ability to recycle GSSG to GSH is decreased [34]. Alternatively, the 
decrease in GSH content in liver during diabetes is probably due to its increased 
utilization by the hepatic cells and this may be an attempt by the hepatocytes to 
counteract the increased formation of lipid peroxides. Vitamin E restored hepatic GSH 
content by trapping LOO● that leads to GSH utilization [35]. 

     Our results showed a significant elevation in SOD activity in liver of diabetic 
rats (Figure 2C). The stimulation of SOD activity mainly Cu/Zn-SOD might occur by a 
cytosolic factor produced through glycolysis or the pentose phosphate pathway, which 
may function as an important mechanism to prevent the toxic effects of high glucose 
concentrations [36]. According to our results, vitamin E showed significant decrease in 
hepatic SOD activity of diabetic rats, which was more than melatonin and L-carnitine, 
knowing that vitamin E was the most significant in decreasing serum glucose level. 
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    TAC is a sensitive and reliable marker to detect changes of in vivo oxidative 
stress that cannot be detected through the measure of a single antioxidant [37]. TAC 
results confirm that CCl4 and diabetes caused a significant depletion of antioxidants in 
the face of reactive species (Figure 1D and Figure 2D respectively). According to 
treatments efficacy, the order was melatonin, L-carnitine and vitamin E for CCl4 model 
and vitamin E, melatonin and L-carnitine for diabetes model. In conclusion these data 
indicate that low dose of melatonin is more effective than high doses of vitamin E and 
L-carnitine in reducing hepatic oxidative stress induced by CCl4 and to less extent 
diabetes-induced hyperglycemia. Moreover, failure of vitamin E to protect against 
CCl4, and its potency in reducing hepatic oxidative stress induced by diabetes can be 
linked not only to the antioxidant actions of vitamin E, but also to the superior effect in 
reducing diabetes-induced hyperglycemia. Finally, same antioxidants can have varying 
responses in different models of oxidative stress. 
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