STUDIES ON HEPATOPROTECTIVE ACTIVITY OF ETHANOLIC EXTRACT OF CASSIA FISTULA BARK AGAINST CCl₄ INDUCED HEPATIC DAMAGE IN WISTAR RATS

SUNETRA PATWARDHAN¹*, PRASHANT VADNAL¹, ABHAY KUMAR SINGHAI ², RAHUL SOMANI¹

¹. Sinhgad College of Pharmacy, Pune-411 041, India.
². Dept. of Pharm. Sci., Dr. HS Gour University, Sagar-470 003, India.
* Corresponding author: sunetra_p@yahoo.co.in

Summary

Hepatoprotective activity of ethanolic extract of Cassia fistula bark was investigated against hepatotoxicity induced by administering CCl₄ with olive oil (1:1), 0.2ml/kg for 10 days by intraperitonial route in wistar rats. Silymarin (100mg/kg, p.o.) and the extracts of Cassia fistula bark (CFB 200 and 400 mg/kg, p.o.) were administered concomitantly for 14 days to the respective groups of animals. Hepatoprotective effect of ethanolic extract of Cassia fistula bark was evident in the doses of 200 and 400 mg/kg as there was significant decrease in AST, ALT, ALP, triglycerides, bilirubin, and protein levels in comparison to CCl₄ control group. Histology of the liver section of the animals treated with the ethanolic extract of Cassia fistula bark in the doses of 200 and 400 mg/kg, further confirmed the hepatoprotective activity.

Keywords: Hepatoprotective, Cassia fistula bark, CCl₄
Introduction

Liver is a vital organ of human body, it has been exposed to various hepatotoxicants (Xenobiotics) in our day to day life of modernization especially in the developing countries. Despite of considerable progress in the treatment of liver damage by oral hepatoprotective agents, much attention has been focused on plant derived drugs because synthetic drugs have several limitations.

Cassia fistula Linn. (Family: Caesalpiniaceae) is commonly called Indian Laburnum and is native to India, Amazon, Sri Lanka and extensively available in various countries including Mauritius, South Africa, Mexico, China, West Indies, East Africa and Brazil (1). The main medicinal property of *C. fistula* is mild laxative suitable for children and pregnant women. It is also used as a purgative due to the wax aloin and a tonic (2) and has been reported to treat many intestinal disorders like ulcers (3,4). It has been reported as antipyretic and analgesic (5). In the Indian literature, this plant has been described to be useful against skin diseases, liver troubles, tuberculous glands and its use in the treatment of haematemesis, pruritus, leucoderma and diabetes has been suggested (6,7). *C. fistula* extract is used as an antiperiodic and antirheumatism (3,4) and the leaf extract is also indicated for its anti-tussive and wound healing properties (8,9). It has been reported that plant parts could be used as a therapeutic agent in the treatment of hypercholesterolaemia partially due to their fibre and mucilage content (10). There are reports indicating its antibacterial activity against a wide spectrum of bacteria namely Escherichia coli, Bacillus mycides, Bacillus subtilis, Mycobacterium smegmatis, Klebsiella aerogenes, Pseudomonas aerogenes and Proteus vulgaris (11). Antitumor (12), antifertility (13), antioxidant (14,15,16) action of *C. fistula* as well as its effects on the central nervous systems (17) and inhibitory effect on leukotriene biosynthesis (18) have been documented. The hepatoprotective activity was reported for *C. fistula* leaf extract (19). Besides its pharmacological uses, the plant extract is also recommended as a pest and disease control agents in India (20, 21, 22). Thus *C. fistula* is well anchored in its traditional uses and has now found widespread acceptance across the world.

However, it was considered worthwhile to screen *Cassia fistula* bark for its hepatoprotective activity against CCl₄ induced hepatotoxicity.
Methods

Collection of plant material and preparation of extract

Fresh barks of *Cassia fistula* were collected from the local area and were authenticated from Botanical Survey of India, Pune (Voucher no. SKCFP1). Freshly collected bark were washed in tap water and shade dried. The dried barks were crushed into a coarse powder. The ethanolic (95%) extract was prepared by maceration. The ethanolic bark extract (CFB) was evaporated to dryness under reduced pressure (% yield = 1.22% w/w).

Preliminary phytochemical screening

The extract was screened for preliminary phytochemical tests for presence of alkaloids, glycosides, sterols, flavonoids, fatty and volatile oils tannins and phenolic compounds etc

Animals

Wistar rats (180-200g) of either sex were maintained at uniform laboratory conditions in standard steel cages and provided with food and water *ad libitum*. The animals were maintained under laboratory condition for an acclimatization period of seven days before performing experiments. Institution Animal Ethics Committee has approved the protocol (SCOP/IAEC/Approval/2006-07/06).

Acute toxicity study

Acute toxicity studies were carried out using acute toxic class method as per OECD guideline 425. Acute toxicity for *Cassia fistula* bark extracts was studied using groups of three Swiss albino mice of same age group and weight were taken in a single dose up to the highest dose of 2000 mg/kg orally. The animals were observed for 1 h continuously and then hourly for 4 h and finally after every 24 h up to 15 days for any mortality or gross behavioral changes.
Experimental design

Five groups of wistar rats were used for the study (n=5). The rats from Group I served as the control and received the vehicle at a dose of 1 ml/kg/day, p.o. for 14 days. Groups II-V received 0.2 ml/kg, i.p. of CCl₄ + olive oil (1:1) for 10 days (23). The standard drug Silymarin (Sigma, Germany) was administered to Group III at the dose of 100 mg/kg, p.o. for 14 days, Groups IV and V were treated with CFB at dose of 200 and 400 mg/kg/day, p.o. for 14 days respectively. The CCl₄, Silymarin and the CFB were administered concomitantly to the respective group of rats.

Assessment of biochemical parameters

All the rats were sacrificed on day 14 under light ether anaesthesia. The blood samples were collected by retro orbital method into sterilized dry centrifuge tubes and allowed to coagulate for 30 min at 37°C. The clear serum was separated at 2500 rpm for 10 min and biochemical investigations were carried out to assess liver function viz., AST, ALT, ALP, triglycerides, bilirubin, and protein using commercial diagnostic kits (Biolab, Mumbai).

Histopathology study

After draining the blood, liver samples were excised, washed with normal saline and processed for histopathological observations. The sections were stained with hematoxylin and eosin and examined microscopically at 400X.

Statistical analysis

The data were evaluated by student’s t test. P values <0.05 were considered statistically significant.
Results

Preliminary phytochemical screening

The ethanolic extract of *C. fistula* bark subjected for preliminary phytochemical study showed the presence of proteins, steroids, flavonoids, anthraquinone glycosides and tannins.

Acute toxicity study

The ethanolic extract of *Cassia fistula* bark did not have any toxic effects up to 2000 mg/kg dose. The animals were alive, healthy and active during the observation period.

Assessment of biochemical parameters

The administration of CCl$_4$ to the animals resulted in a marked increase in serum AST, ALT, ALP, triglycerides, bilirubin and protein levels. The toxic effect of CCl$_4$ was controlled in the rats treated with the CFB by restoration of the levels of the liver function biochemistry similar to that of the standard drug Silymarin. Treatments with ethanolic extract of *C. fistula* bark showed significant ($P<0.05$) hepatoprotective activity.

Histopathological observations

Histological profile of the control rats showed normal hepatocytes (NH) and central vein (CV) (Fig. 9A). Group II rats exhibited intense centrilobular necrosis (N), vacuolization (V) and macrovesicular fatty change (F) (Fig. 9B). The sections of liver taken from the rats treated with standard drug Silymarin showed the hepatic architecture, which was similar to that of control (Fig. 9C). The rats treated with CFB exhibited significant liver protection against the CCl$_4$ as evident by the presence of normal hepatic cords, absence of necrosis and lesser fatty infiltration (Fig. 9D and 9E).
Fig. 1: Effect of ethanolic extract of *C. fistula* bark on AST

![Graph showing the effect of ethanolic extract of *C. fistula* bark on AST.](image)

n=5, values are expressed as mean±SEM
* P< 0.05 compared to control group (student’s t test)

Fig. 2: Effect of ethanolic extract of *C. fistula* bark on ALT

![Graph showing the effect of ethanolic extract of *C. fistula* bark on ALT.](image)

n=5, values are expressed as mean±SEM
* P< 0.05 compared to control group (student’s t test)
Fig. 3: Effect of ethanolic extract of *C. fistula* bark on ALP

![Graph showing the effect of ethanolic extract of *C. fistula* bark on ALP.]

\[\text{Values are expressed as mean} \pm \text{SEM} \]

* \(P < 0.05\) compared to control group (Student's t-test)

Fig. 4: Effect of ethanolic extract of *C. fistula* bark on Triglycerides

![Graph showing the effect of ethanolic extract of *C. fistula* bark on Triglycerides.]

\[\text{Values are expressed as mean} \pm \text{SEM} \]

* \(P < 0.05\) compared to control group (Student's t-test)
Fig. 5: Effect of ethanolic extract of *C. fistula* bark on Albumin

![Bar graph showing the effect of ethanolic extract of *C. fistula* bark on Albumin levels.]

- Normal control
- CCl4
- Sylimarin (100)
- CFB (200)
- CFB (400)

n=5, values are expressed as mean±SEM
* P< 0.05 compared to control group (student’s t test)

Fig. 6: Effect of ethanolic extract of *C. fistula* bark on Protein

![Bar graph showing the effect of ethanolic extract of *C. fistula* bark on Protein levels.]

- Normal control
- CCl4
- Sylimarin (100)
- CFB (200)
- CFB (400)

n=5, values are expressed as mean±SEM
* P< 0.05 compared to control group (student’s t test)
Fig. 7: Effect of ethanolic extract of *C. fistula* bark on Total Bilirubin

![Graph showing effect of ethanolic extract of C. fistula bark on Total Bilirubin](image)

- Normal control
- CCl4
- Sylinarin (100)
- CFB (200)
- CFB (400)

n=5, values are expressed as mean±SEM
* P< 0.05 compared to control group (student’s t test)

Fig. 8: Effect of ethanolic extract of *C. fistula* bark on Direct Bilirubin

![Graph showing effect of ethanolic extract of C. fistula bark on Direct Bilirubin](image)

- Normal control
- CCl4
- Sylinarin (100)
- CFB (200)
- CFB (400)

n=5, values are expressed as mean±SEM
- P< 0.05 compared to control group (student’s t test)
Fig 9: Liver Transverse section of hepatic cells of A] Normal (vehicle 1ml/kg) B] CCl₄+olive oil (0.2ml/kg) C] CCl₄+Silymarin (100mg/kg) D] CCl₄+CFB (200mg/kg) E] CCl₄+CFB (400mg/kg) at 400X.
Discussion

The CCl$_4$ has been used as a tool to induce hepatotoxicity in experimental animals (24, 25). It is well established that hepatotoxicity by CCl$_4$ is due to enzymatic activation to release CCl$_3$ radical in free state, which in turn disrupts the structure and function of lipid and protein macromolecule in the membrane of the cell organelles (26). This toxic chemical caused peroxidative degradation in the adipose tissue resulting in fatty infiltration of the hepatocytes. The increased level of AST, ALT, ALP, and bilirubin is conventional indicator of liver injury. In the present study also, it was observed that administration of CCl$_4$ elevates the levels of serum marker enzymes AST, ALT, ALP, bilirubin, triglycerides and decrease level of total protein. The increased in the levels of serum bilirubin reflected the depth of jaundice and the increase in transaminases and alkaline phosphatase was the clear indication of cellular leakage and loss of functional integrity of the cell membrane (27). The treatment with CFB at 200, 400mg/kg stabilizes serum AST, ALT, ALP, bilirubin, triglycerides levels and elevated total protein levels towards normal values significantly. Reduction in levels of AST and ALT by the extracts is an indication of stabilization of plasma membrane as well as repair of hepatic tissue damage caused by CCl$_4$. This effect is agreement with the commonly accepted view that serum levels of transaminases return to normal with the healing of hepatic parenchyma and regeneration of hepatocytes (28). The stabilization of liver cells by CFB is a clear indication of its improvement in the functional status. Further it has been reported that flavonoid constituents of plant possess antioxidant properties which may show free radical scavenging and anti lipid peroxidant activities against CCl$_4$ induced hepatic toxicity (29). The antioxidant activity of stem bark, leaves, flowers and pulp of *C. fistula* has been reported and correlated with the total polyphenolic/ flavonoid content of the respective extracts. The stem bark had more antioxidant activity in terms of reducing power, inhibition of peroxidation, O$_2^-$ and DPPH radical scavenging ability (15). This may prove useful in treatment of liver damage.

Thus, *Cassia fistula* bark possesses potential to protect the liver against CCl$_4$ induced hepatotoxicity in rats.
Acknowledgement

The authors wish to thank Prof. M.N. Navale, Founder President, STES and Dr. K.S. Jain, Principal, SCOP for providing facilities to carry out this work.

References

