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Summary 
 

In the present study effect of Glimepiride (GLI) alone and its combination 
with Metformin (MET) was investigated in non diabetic and Streptozotocin-
Nicotinamide induced diabetic and associated hepatic dysfunctioning in rats. 
Glimepiride(0.5 mg/kg/day, p.o) alone and its combination with Metformin 
(50 mg/kg/day, p.o) was administered for 28 days in rats injected with single 
dose of Streptozotocin (65 mg/kg, i.p, STZ) and Nicotinamide (110 mg/kg, i.p, 
NIC). STZ–NIC induced animals showed a significant (p<0.001) increased in 
the level of serum glucose, glycosylated heamoglobin (HbA1c), aspartate 
aminotransferase (AST), alanine aminotransferase (ALT), alkaline 
phosphatase (ALP) and gamma glutamic transpeptidase (γGTP). The level of 
lipid peroxidation (LPO) in liver tissue was significantly increased. Whereas, 
the activity of biomarkers of oxidative stress such as reduced glutathione 
(GSH), catalase (CAT) and superoxide dismutase (SOD) were found to be 
decreased significantly compared to control rats. There was no significant 
changes in the level of total bilirubin (TB) were observed. Treatment with GLI 
(0.5 mg/kg/day, p.o) alone and in combination Metformin (50 mg/kg/day, p.o) 
showed a significant alteration in all the serum markers and biomarkers of 
oxidative stress towards normal. This study indicates that GLI alone may be 
better than GLI combination with MET in protecting hepatic functions in 
diabetic conditions. 
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Introduction 
 

Recent epidemiological studies suggested that patients with diabetes 
are twice as likely to suffer hepatic failure compared to patients who do not 
have diabetes. Increased incidences of hepatotoxicity have been observed in 
patients with diabetes receiving drug therapies. Neither the mechanisms nor 
the predisposing factors underlying hepatotoxicity in patients with diabetes are 
clearly understood (1). Type 2 diabetes (T2D) is a progressive disorder with a 
consistent and steady increase in HbA1c over time associated with enhanced 
risk of micro- and macrovascular complications and a substantial reduction in 
life expectancy. There are three major pathophysiologic abnormalities 
associated with T2D: impaired insulin secretion, excessive hepatic glucose 
output and insulin resistance in skeletal muscle, liver and adipose tissue.  

The oxidative stress is thought that also in case of diabetes an increase 
of reactive oxides and peroxides of lipids occurs along with the lower activity 
of antioxidative factors (2–4). Mechanism which is responsible for the 
development of oxidative stress in diabetes has not been univocally 
determined. A factor probably of greatest significance is hyperglycemia 
occurring with hypoinsulinemia (5). Normalization of glucose level may thus 
be a factor inhibiting the development of oxidative stress in diabetes.  

Glimepiride is an insulin secretagogue in the Sulfony Urea family and 
MET improves insulin sensitivity, decreases insulin levels and controls 
hyperglycemia (6, 7). 

Glimepiride has been developed for glycemic control in diabetic 
patients and represents the third generation sulphonylurea. It effectively 
inhibits the development of oxidative stress in diabetes (8) by possessing a 
potent extrapancreatic effect on glucose metabolism and may directly 
stimulate glucose transport activity through phospholipid signaling pathway 
(9).  

Metformin improves lipid profiles and lowers blood pressure in both 
patients and animal models with impaired glucose tolerance and type 2 
diabetes mellitus (10-13). MET works in a number of ways to decrease the 
amount of sugar in the blood. Firstly, it reduces the amount of sugar produced 
by cells in the liver. Secondly, it increases the sensitivity of muscle cells to 
insulin. This enables these cells to remove sugar from the blood more 
effectively.  

GLI and its combination with MET is used for people with type 2 
diabetes who do not use daily insulin injections.  
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Literature survey showed that, there was no report regarding the effect 
of Glimepiride alone and its combination with Metformin on the hepatic 
function diabetic rats. Therefore the above study was designed to evaluate the 
effect of GLI alone and along with MET on hepatic functions and biomarkers 
of oxidative stress in STZ-NIC induced diabetic model in rats. 

Materials and Method 

Drugs and Chemicals 

Glimepiride and Metformin HCL were obtained as a gift sample from 
Alembic Pharmaceuticals Pvt.  Ltd., Baroda, India. STZ and NIC were 
obtained form SIGMA, St. Louis, MO, USA. Other chemicals and reagents 
used in the study were of analytical grade.  

Experimental Animals 

All experiments and protocols described in present study were 
approved by the Institutional Animal Ethics Committee (IAEC) of Pharmacy 
department, The M.S. University of Baroda. Sprague–Dawley rats (210±15 g) 
were housed in-group of 3 animals per cage and maintained under 
standardized laboratory conditions (12- h light/dark cycle, 24°C) and provided 
free access to palleted CHAKKAN diet (Nav Maharashtra Oil Mills Pvt., 
Pune) and purified drinking water ad libitium. 

Experimental Induction of Type 2 Diabetes in Rats  

Type 2 Diabetes was induced in overnight fasted rats by a single 
intraperitoneal injection of 65 mg/kg STZ, 15 min after the i.p administration 
of 110 mg/kg of NIC (14). After 7 days following STZ and NIC 
administration, blood was collected from tail vein and serum samples were 
analyzed for blood glucose. Animals showing fasting blood glucose higher 
than 300 mg/dl were considered as diabetic and were used for the study.  

Experimental Protocol 

Animals were divided in to following groups, each group containing 6 
animals and the treatment period for whole study was 4 weeks. 

Group 1: Nondiabetic control, received CMC as vehicle (1ml/kg/day, p.o, 
ND-CON).   

Group 2: Nondiabetic group treated with GLI (0.5 mg/kg/day, p.o, ND-GLI).  

Group 3: Nondiabetic group treated with GLI (0.5 mg/kg/day, p.o) and its 
combination with MET (50 mg/kg/day, p.o, ND-GLI+MET). 
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Group 4: Diabetic control, single injection of STZ (65 mg/kg, i.p) and NIC 
(110 mg/kg, i.p, D-CON). 

Group 5: Diabetic rats treated with GLI (0.5 mg/kg/day, D-GLI). 

Group 6: Diabetic rats treated with GLI (0.5 mg/kg/day, p.o) with MET (50 
mg/kg/day, p.o) (DB-GLI +MET). 

Biochemical Estimations 

Characterization of Type 2 Diabetes Model 

 Type 2 diabetes was confirmed by measuring no fasting serum glucose 
(SPAN diagnostics Pvt., India) and the degree of uncontrolled diabetic (DB) 
state was confirmed by measuring HbA1c  (Ion Exchange Resin method). 
After 4 weeks, diabetes was confirmed by measuring glucose and HbA1c as 
mentioned above. 

Estimation of Serum Markers 

On 4th weeks blood samples were collected from retro-orbital plexus 
under light ether anesthesia and centrifuged at 2500 rpm for 20 minutes to 
separate serum. Glucose, HbA1c, AST, ALT, ALP, γGTP and TB were 
estimated from serum sample using standard Diagnostic Kit. In vitro 
quantitative determination of the activity of AST, ALT and TB (SPAN 
Diagnostics Pvt., India) ALP, γGTP (Crest Biosystems, India) were done 
using enzymatic kit in serum. 

Estimation of biomarkers of Oxidative stress 

The excised liver was then weighed and homogenized in chilled tris 
buffer (10 mM, pH 7.4) at a concentration of 10% (w/v). The homogenates 
were centrifuged at 10,000×g at 0oC for 20 min using Remi C-24 high speed 
cooling centrifuge. The clear supernatant was used for the assay of following 
antioxidant parameters. The levels of Lipid peroxidation (LPO) formation and 
the activities of endogenous antioxidant enzymes such as Catalase (CAT), 
reduced glutathione (GSH) and Superoxide dismutase (SOD) were estimated 
by the method of Slater and Sawyer (15), Hugo Aebi as given by Hugo (16), 
Moron et al (17) and Mishra and Fridovich (18). 

Statistical Analysis 

All of the data are expressed as mean ± SEM. Statistical significance 
between more than two groups was tested using one-way ANOVA followed 
by the Bonferroni multiple comparisons test or unpaired two-tailed student’s t-
test as appropriate using a computer-based fitting program (Prism, Graphpad 
5). Differences were considered to be statistically significant when p < 0.05. 
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Results 
Characterization of Type 2 Diabetes.  

Table 1 showed a significant (P<0.001) decrease in body weight levels 
in STZ-NIC treated rats (DB-CON) as compared to ND-CON animals. As 
shown in table1, treatment with GLI (0.5 mg/kg/day, p.o) alone and 
combination with MET (50 mg/kg, p.o) showed a significant (P<0.05) 
increase in body weight as compared to control non-diabetic (ND) rats and 
DB-CON rats. Table 1 showed a significant (P<0.001) increase in serum 
glucose and HbA1c levels in STZ-NIC treated rats (DB-CON) as compared to 
ND-CON animals. The levels of glucose and HbA1c was significant 
(P<0.001) decreased after treatment with GLI (0.5 mg/kg/day, p.o) alone and 
combination with MET (50 mg/kg) alone as compared to DB-CON rats.  

Table 1. Effect of GLI (0.5 mg/kg/day, p.o) alone and combination with 
Metformin (50 mg/kg/day, p.o) on changes in body weight, serum glucose and 
HbA1c level in non diabetic and STZ-NIC induced diabetic rats. 
 

Group 
Body weight 

(gm) 
Glucose 
(mg/dl) 

HbA1c 
(%) 

ND-CON 248.33±5.95 101.0±6.17 5.45±0.37 
ND-GLI 245.08±11.12 60.92±7.16$ 5.08±0.31 
ND-GLI+MET 257.43±11.25$ 59.46±6.34$ 3.53±0.36 
DB-CON 224.83±8.52$ 406.8±6.50$$$ 11.18±0.52$$$ 
DB-GLI 246.08±7.69* 167.8±12.05*** 7.10±0.42*** 
DB-GLI+MET 247.92±8.83* 132.65±9.46*** 5.99±0.26*** 

 
Values are expressed as mean ± SEM for six animals in the group. $P<0.05, 
$$P<0.01, $$$P<0.001, considered statistically significant as compared to ND-
CON group.*P<0.05, ** P<0.001, ***P<0.001 considered statistically significant 
as compared to D-CON group. 

Effect of GLI and MET on serum marker enzymes 

Figure 1 showed a significant (P<0.001) increase in serum AST and 
ALT levels in STZ-NIC treated rats (DB-CON) as compared to ND-CON 
animals. Treatment with GLI (0.5 mg/kg) for 4 weeks, showed further 
decrease in serum AST and ALT level (P<0.01) as compared to DB-CON 
group alone. Whereas treatment with GLI (0.5 mg/kg) combination with MET 
(50 mg/kg) for 4 weeks showed no changes in the serum levels AST and ALT 
level as compared to DB-CON group alone. 
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Figure1. Effect of GLI (0.5 mg/kg/day, p.o) alone and combination with 
Metformin (50 mg/kg/day, p.o) on changes in serum ALT (a) and AST (b) 
level in non diabetic and STZ-NIC induced diabetic rats. Values are expressed 
as mean ± SEM for six animals in the group. *P<0.05, **P<0.001, 
***P<0.001and ns-no significant considered statistically significant as 
compared to Control group. 
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Table 2. Effect of GLI (0.5 mg/kg/day, p.o) alone and combination with 
Metformin (50 mg/kg/day, p.o) on changes in ALP, γGTP and Total bilirubin 
level in non diabetic and STZ-NIC induced diabetic rats. 

Values are expressed as mean ± SEM for six animals in the group. 
$P<0.05, $$P<0.01, $$$P<0.001 considered statistically significant as 
compared to ND-CON group; * P<0.05, ** P<0.001, ***P<0.001 considered 
statistically significant as compared to D-CON group. 

 
Administration of STZ-NIC alone significantly increases ALP 

(P<0.001) and γGTP (P<0.05) levels as compared to control rats but there was 
no significant changes in the levels of TB. As shown in table 2, treatment with 
GLI (0.5 mg/kg, p.o) showed a significant (P<0.01) decrease in ALP, γGTP 
and TB as compared to DB control rats. Whereas treatment with GLI (0.5 
mg/kg) combination with MET (50 mg/kg) for 4 weeks showed significantly 
increases ALP (P<0.05) levels as compared to DB control rats. 

Effect of GLI and MET on Biomarkers of oxidative stress 

MDA level was significantly (p<0.001) increased and the levels of 
GSH, CAT and SOD were significantly (p<0.001) decreased in STZ-NIC 
treated rats when compared with those of the animals in control group. 
Treatment with GLI (0.5 mg/kg) showed significantly (p<0.01) decreased 
MDA and increased the levels of GSH (p<0.01), CAT (p<0.01) and SOD 
(p<0.01) (Fig. 2). Whereas treatment with GLI (0.5 mg/kg) combination with 
MET (50 mg/kg) (10 mg/kg) for 4 weeks, showed no significantly MDA and 
no significant the levels of SOD, CAT and significantly (p<0.05) decreased 
GSH changes in the tissue levels as compared to DB-CON group and NB-
CON group. 

Group 
ALP  

(IU/L) 
γGTP (IU/L) 

TB 
 (IU/L) 

ND-CON 138.2± 7.43 76.52± 4.29 0.7192±0.0419 
ND-GLI 146.7± 10.57 82.65± 6.46 0.7341±0.0382 
ND-GLI+MET 156.30± 9.33 93.92± 10.4 0.8820±0.0651 
DB-CON 194.2± 12.22$$$ 115.9± 7.10$ 0.8914±0.0567 
DB-GLI 133.0± 12.12** 69.66± 8.02** 0.5051±0.0767** 
DB-GLI+MET 221.30± 12.32* 121.76±9.22 1.000±0.1011 
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Figure 2. Effect of GLI (0.5 mg/kg/day, p.o) alone and combination with 
Metformin (50 mg/kg/day, p.o) on CAT (a), SOD (b), MDA (c) and GSH (d) 
level in non diabetic and STZ-NIC induced diabetic rats. (a) Catalase (CAT), 
b) Superoxide dismutase (SOD), c) lipid peroxidation or malondialdehyde 
(MDA) and d) reduced glutathione (GSH) levels in rats subjected to after 4 
weeks, Values are expressed as mean ± SEM for six animals in the group. 
*P<0.05, **P<0.001; ***P<0.001 and ns-no significant considered statistically 
significant as compared to Control group. 
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Discussion 

The present study was undertaken with the objective of exploring the 
hepatic function of GLI alone and its combination with MET in STZ-NIC 
induced diabetic rats. Recent studies have suggested that prevalence of type 2 
diabetes is rapidly increasing.  

In STZ-NIC induced diabetes, the characteristic loss of body weight 
caused by an increase in muscle wasting (19). In the present study treatment 
with GLI alone and combination with MET showed significant increase in 
body weight which may be because of formation of oedema in the tissue. In 
the present study, an increase in the levels of serum glucose and HbA1c in 
STZ-NIC treated rats confirmed the induction of diabetes mellitus. Significant 
decrease was observed in the glucose and HbA1c level in diabetic rats after 
treatment with GLI alone and GLI combination with MET when compared 
with DB-CON rats at the end of experimental period. STZ causes diabetes by 
the rapid depletion of β-cells and thereby brings about an eduction in insulin 
release. HbA1c level has been reported to be increased in patients with 
diabetes mellitus (20). It was reported that during diabetes mellitus, the excess 
of glucose present in the blood reacts with hemoglobin to form HbA1c 
(21).The level of HbA1c is always monitered as a reliable index of glycemic 
control in diabetes (22).Elevated levels of HbA1c observed in our study reveal 
that diabetes animals had prior high blood glucose level.  

In STZ induced animals a change in the serum enzymes is directly 
related to changes in the metabolic functions of AST, ALT, ALP and γ- GTP 
(23-25). It has been reported that the increased levels of transaminases under 
insulin deficiency (26) were responsible for the increased gluconeogenesis and 
ketogenesis during diabetes. The increased levels of serum AST, ALT and 
ALP have already been reported to be associated to liver dysfunction and 
leakage of these enzymes to the liver cytosol in to the blood stream in diabetes 
(27). Decreased in the activity of AST, ALT, ALP and γ- GTP in GLI and 
combination with MET treated diabetic rats indicate the protective role of the 
GLI combination with MET against STZ–NIC induced hepatocellular necrotic 
changes. 

Oxidative stress originating from improper control of the reduction of 
O2 is believed to play a role in the tissue and cellular damage caused by a 
variety of conditions in diabetes (28).The effects of thiazolidinediones on 
oxidative stress are difficult to predict (29). Previous studies have proved that, 

thiazolidinedione exposure increase oxidative stress (30). SOD and CAT are 
considered as primary enzymes since they are involved in the direct 
elimination of reactive oxygen species (31).  
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SOD is an important defense enzyme, which catalyzes the dismutation 
of superoxide radicals (32) and CAT is a hemoprotein, which catalyzes the 
reduction of hydrogen peroxides and protects tissues from highly reactive 
hydroxyl radicals (33). The reduced activity of SOD and CAT in the liver 
observed in diabetes may pose deleterious effects as the result of the 
accumulation of superoxide anion radicals and hydrogen peroxide (34). GSH, 
the most important biomolecule protecting against chemical induced toxicity, 
participates in the elimination of reactive intermediates by reduction of 
hydroperoxide in the presence of glutathione peroxidase (35, 36). In our study, 
the activity of endogenous antioxidants was significantly changed with GLI 
alone and combination with MET. Treatment with GLI alone and GLI with 
MET further increases the levels of endogenous antioxidants and decreases the 
level of lipid peroxidation.  

This study concluded that GLI alone and combination with MET may 
show some protection in STZ-NIC induced diabetic rats whereas with doses 
and chronic treatment it showed further liver protection but GLI alone may be 
better than GLI combination with MET in protecting hepatic functions in 
diabetic conditions. 
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