Anti-Obesity Activity of Bauhinia Variegata Linn. in High Fat Diet Induced Obesity in Female Rats

*Yash Prashar and A. Saravana Kumar

*Department of Pharmacology, C.L.Baid Metha College of Pharmacy, Jhothy Nagar, Thorapakkam, Chennai, India-600097.

1Department of Pharmacology, Sree Vidyanikethan College of Pharmacy, Sainagar, Chandragiri (M), Tirupati, Andhra Pradesh, India-517102.

Summary

Bauhinia variegata Linn. (Family- Leguminosae) bark is a useful in ulcers and skin diseases and a remedy in obesity and diarrhoea. Therefore, the present investigation was carried out to investigate the constituents and anti-obesity activity of the aqueous extract of Bauhinia variegata (AEBV). Hence this study is emphasized to explore the effect of AEBV 200 & 400mg/kg, p.o on energy balance disorders like, obesity, hyperphagia, hyperglycaemia and hyperlipidemia. From the observations of the study performed, it could be predicted that Bauhinia variegata root extracts exerted significant anti-obese activity due to its hypophagic, hypoglycaemic and hypolipidemic effect in rats fed on high fat diet. Further investigation need to measures the enzymes in lipid pathways and hormones would ascertain the exact mechanism of anti-obese effect and to figure out the therapeutic potential of Bauhinia variegata root in the treatment of obesity.

Key words: Bauhinia variegata Linn., Anti-obesity, Hypophagic, Hypoglycaemic and Hypolipidemic

*Address for Correspondence
Yash Prashar M.Pharm.,
Department of Pharmacology,
C.L.Baid Metha College of Pharmacy,
Jhothy Nagar, Thorapakkam,
Chennai, India-600097.
E Mail: yashprashar@gmail.com

Introduction

Bauhinia variegata Linn. is a species of flowering plant in the family Leguminosae, native to southeastern Asia, from southern China west to India. Decoction of bark is a useful wash in ulcers and skin diseases and a remedy in obesity and diarrhoea. Dried buds are useful in diarrhoea, worms, piles, dysentery[1]. It was reported that extract from Bauhinia variegata exhibited anti tumor activity[2], anti-inflammatory activity[3], antibacterial activity[4] and Hepatoprotective[5] properties. The claim for the utility of this plant in treatment of obesity has not been scientifically evaluated. Hence this study is emphasized to explore the effect of root on energy balance disorders like, obesity, hyperphagia, hyperglycaemia and hyperlipidemia. Therefore, the present investigation was carried out to investigate the constituents and anti-obesity activity of the aqueous extract of Bauhinia variegata is being reported here.
Materials and Methods

Collection and authentication of plant material
The root part of Bauhinia variegata was collected from Tirunelveli district, Tamil Nadu in the month of July 2007. The plant material was identified and authenticated by V.Chelladurai Research officer botany C.C.R.A.S Govt of India. Specimen was submitted at C.L Baid Metha College of pharmacy.

Preparation of aqueous plant extract
Freshly collected root of Bauhinia variegata was dried in shade and pulverized to get a coarse powder. A weighed quantity of the powder (200g) was passed through sieve number 40 and subjected to cold maceration extraction in a simple apparatus using 1000ml water kept in refrigerator. Compound was immersed in cold water and stirred occasionally during a period of 48 hours. After 48 hours filter the extract and press the mark. Pressed extract was added to previous extract. The filtrate was evaporated to dryness at 40°C under reduced pressure in a rotary vacuum evaporator. The percentage yield of aqueous extract was 12% w/w.

Phytochemical Screening
The phytochemical examination of aqueous extract of Bauhinia variegata was performed by the standard methods [6].

Experimental animals
Colony inbred strains of wistar rats female weighing 150-180g were used for the pharmacological studies. The animals were kept under standard conditions (day/night rhythm) 8.00 am to 8.00 p.m, 22 ± 1°C room temperature, in polypropylene cages. The animals were feed on standard pelleted diet (Pranav Agro industries, Sangli) and tap water ad libitum. The animals were housed for one week in polypropylene cages prior to the experiments to acclimatize to laboratory conditions. It was randomly distributed into seven different groups with six animals in each group under identical conditions throughout the experiments. The experimental protocol was approved by the Institutional Animal Ethical Committee (IAEC) of CPCSEA (Committee for the Purpose of Control and Supervision of Experimental Animals). IAEC Reference number: IAEC/XI/13/CLBMCP/2007-2008.

Acute toxicity study
The acute toxicity of aqueous extract of Bauhinia variegata root was determined as per the OECD guideline no. 423 (Acute Toxic Class Method). It was observed that the test extract was not lethal to the rats even at 2000mg/kg dose. Hence, 1/10th (200mg/kg) and 1/5th (400mg/kg) of this dose were selected for further study [7].

Pharmacological studies
High fat diet Induced obesity in experimental rats
Preparation of diet
High fat diet is a hyper caloric diet and was prepared by mixing the above constituents in fixed percentage. The above mentioned percentage is for 100g diet. The feed was prepared, dried, powdered and administered every day in morning to animals with water ad libitum. Diet was administered and weight gain was observed in rats on third day, therefore confirming the development of obesity in rats. Study was continued for 40 days.
High Fat Diet Formula
casein -20%, D,L methionine-0.3%, corn starch-15%, sucrose-27.5%, cellulose powder-5%,
mineral mixture-3.5%, vitamin mixture-1%, choline bitartrate-0.2%, corn oil -9.9%, lard oil-
17.6% [8,9,10].

Anti-Obesity Studies
Female wistar rats (150-180g) were given high fat diet for 40 days. Forty two rats were randomly
divided into 7 groups of six animals each. The following schedule of dose, diet administration in
experimental groups was followed:
Group: I- The animals received 0.9% saline (5ml/kg/p.o) and served as normal control.
Group: II- The animals received only high fat diet and served as negative control.
Group: III- The animals received high fat diet and treated with AEBV (200mg/kg/ p.o)
suspended in in 0.9% saline.
Group: IV- The animals received high fat diet and treated with AEBV (400mg/kg/ p.o)
suspended in in 0.9% saline.
Group: V- The animals received sibutramine (5mg/kg/p.o) suspended in 0.9% saline and high fat
diet.

The above mentioned treatment schedule was followed for the respective group of
animals for 40 days. Daily all the animals were given high fat diet with drug treatment of
aqueous root extracts of Bauhinia variegate [11,12].

In vivo pharmacological evaluation

Body Weight
The body weight weight (gm) was recorded on day one and then on alternate days for 40
days using digital weighing balance.

Food Intake
The daily food intake for group of 6 rats was measured daily for 40 days and expressed as
mean daily food intake for group of 6 rats.

Body Temperature
The body temperature was recorded on day 39 using rectal telethermometer before and
after drug administration at 30, 60, 90, 120, 180 minutes with a contact time of 1 minute.

Biochemical studies
On day 41 of experiment the animals were sacrificed by cervical dislocation and blood samples
were collected by carotid bleeding separately into sterilized dry centrifugation tubes and allowed
to stand for 30 minute at 37°C. The clear serum was separated at 2500 rpm for 10min using micro
centrifuge and biochemical investigation such as Cholesterol, HDL-C, Triglycerides, LDL-C,
VLDL-C, Atherogenic index, percentage protection, SGOT, SGPT, Blood glucose and Total
protein were carried out.
Statistical Analysis
The Statistical Analysis was carried out using analyses of variance (ANOVA) followed by Dunnet’s test. p values <0.05 were considered as significant.

Results
The aqueous extract showed the presence of various phytochemical constituents like alkaloids, carbohydrates, terpenes, tannins, sterols, glycoside, flavonoids and saponins. Steroids, proteins, gum mucilage, fixed oils, flavones were found absent.

Effect on body weight:
Group II animals fed on high fat diet (HFD) exhibited significant (p<0.01) increase in body weight between day 1 and day 40 as compared to group I animals. Treatment with AEBV (200 and 400 mg/Kg/p.o) showed a significant (p<0.01) decrease in body weight as compared with group II animals. AEBV (200 and 400 mg/Kg/p.o) dose dependently decrease body weight. Results are shown in Table:1.

Effect on feed intake
Group II animals fed on HFD fed rats showed significant (p<0.01) increase in daily food intake when compared with group I animals. Treatment with AEBV (200 and 400 mg/kg/p.o) (200 and 400 mg/kg/p.o) showed significant (p<0.01) decrease daily food intake as compared with group II animals. Results are shown in Table:2.

Effect on body temperature
Group II animals exhibited significant (p<0.01, p<0.05) increase in body temperature at 60, 120, 180 minute as compared to group I animals. Group III when compared with group II animals exhibited significant (p<0.01, p<0.05) increase at 60, 120, 180 minute. Group IV when compared with group II animals exhibited significant (p<0.01, p<0.05) increase at 30, 60, 120, 180 minute. Group V when compared with group II animals exhibited significant (p<0.01, p<0.05) increase at 30, 60, 90, 180 minute. Results are shown in Table:3.

Lipid Profile
Group II animals fed with HFD exhibited significant (p<0.01) increase in total cholesterol, TG, LDL, and VLDL when compared with group I animals. Group III to group V animals exhibited a significant (p<0.01) decrease total cholesterol, TG, LDL, and VLDL when compared with group II animals. The group II animals exhibited significant (p<0.01) reduction in HDL cholesterol when compared with group I animals. Group III to V animals exhibited significant (p<0.01) increase HDL when compared to Group II animals. Result are shown Table:4.

Atherogenic index and percentage protection
There was decrease in atherogenic index in all the treated groups. Percentage protection for Group III (14.31%) and Group IV (20.50%). Results are shown in Table:5.

Liver Function Tests
The levels of SGOT, SGPT, Blood Glucose and Total Proteins in Group II animals were significantly (p<0.01) increased when compared with group I animals. Group III animals exhibited a significant (p<0.01) decrease when compared with group II animals. Group V exhibited a significant (p<0.01) increase when compared with group II animals. Results are shown in Table: 6.
Table 1. Effect of AEBV on weight gain (g) in rats

<table>
<thead>
<tr>
<th>S.No</th>
<th>Groups</th>
<th>Treatment</th>
<th>Weight on day 1</th>
<th>Weight on day 40</th>
<th>Weight gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>I</td>
<td>Control</td>
<td>185.83±3.5620</td>
<td>168.33±3.1545</td>
<td>10.0 ± 0.4174</td>
</tr>
<tr>
<td>2.</td>
<td>II</td>
<td>Diet control</td>
<td>161.33±3.0948</td>
<td>229.00±4.5240</td>
<td>67.67 ± 1.1492*</td>
</tr>
<tr>
<td>3.</td>
<td>III</td>
<td>AEBV(200mg)</td>
<td>157.00±2.3520</td>
<td>205.33±2.6540</td>
<td>47.50 ± 0.1077*</td>
</tr>
<tr>
<td>4.</td>
<td>VI</td>
<td>AEBV(400mg)</td>
<td>157.00±2.3520</td>
<td>190.50±3.6120</td>
<td>33.50 ± 1.2061*</td>
</tr>
<tr>
<td>5.</td>
<td>V</td>
<td>Sibutramine(5mg)</td>
<td>159.33±3.4897</td>
<td>183.16±3.3600</td>
<td>23.83 ± 0.1121*</td>
</tr>
</tbody>
</table>

Table 2. Effect of AEBV on daily feed intake(g) in rats

<table>
<thead>
<tr>
<th>S.No</th>
<th>Group</th>
<th>Treatment</th>
<th>Feed intake</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>I</td>
<td>Control</td>
<td>136.58±0.6982</td>
</tr>
<tr>
<td>2.</td>
<td>II</td>
<td>Diet control</td>
<td>155.53±2.294**</td>
</tr>
<tr>
<td>3.</td>
<td>III</td>
<td>AEBV(200mg)</td>
<td>142.73±0.6229**</td>
</tr>
<tr>
<td>4.</td>
<td>VI</td>
<td>AEBV(400mg)</td>
<td>133.25±0.4716**</td>
</tr>
<tr>
<td>5.</td>
<td>V</td>
<td>Sibutramine(5mg)</td>
<td>94.25±2.428**</td>
</tr>
</tbody>
</table>

Values are mean ± SEM of six animals. Statistical significance test for comparisons was done by ANOVA, followed by Dunnet’s test. Comparisons were made between: a) Group I vs Group II. b) Group III, IV, V vs Group II.
**p value < 0.01, *p value <0.05, ns non-significant
Table 3. Effect of AEBV on Body Temperature in rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>Treatment</th>
<th>0</th>
<th>30</th>
<th>60</th>
<th>90</th>
<th>120</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Control</td>
<td>37.03±0.33</td>
<td>36.28±0.08</td>
<td>35.43±0.37</td>
<td>36.80±0.33</td>
<td>36.15±0.23</td>
<td>36.08±0.15</td>
</tr>
<tr>
<td>II</td>
<td>Diet control</td>
<td>36.73±0.33ns</td>
<td>36.73±0.19ns</td>
<td>36.83±0.07**</td>
<td>36.93±0.15ns</td>
<td>37.63±0.36*</td>
<td>37.37±0.32**</td>
</tr>
<tr>
<td>III</td>
<td>AEBV(200mg)</td>
<td>36.41±0.09ns</td>
<td>36.34±0.07ns</td>
<td>37.15±0.22**</td>
<td>37.25±0.17ns</td>
<td>37.48±0.32*</td>
<td>36.96±0.19*</td>
</tr>
<tr>
<td>IV</td>
<td>AEBV(400mg)</td>
<td>36.86±0.22ns</td>
<td>37.10±0.21**</td>
<td>37.30±0.20**</td>
<td>37.18±0.26**</td>
<td>37.68±0.36*</td>
<td>37.15±0.15**</td>
</tr>
<tr>
<td>V</td>
<td>Sibutramine(5mg)</td>
<td>36.7±0.22ns</td>
<td>37.34±0.16**</td>
<td>37.28±0.21**</td>
<td>37.84±0.09*</td>
<td>37.40±0.39**</td>
<td>37.48±0.36**</td>
</tr>
</tbody>
</table>

Table 4. Effect of AEBV on Serum lipid profile in rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>Treatment</th>
<th>Total cholesterol (mg/dl)</th>
<th>Triglycerides (mg/dl)</th>
<th>LDL-C(mg/dl)</th>
<th>VLDL-C(mg/dl)</th>
<th>HDL-C(mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Control</td>
<td>66.37±1.58</td>
<td>173±2.21</td>
<td>25.48±0.51</td>
<td>34.61±0.44</td>
<td>43.17±0.94</td>
</tr>
<tr>
<td>II</td>
<td>Diet control</td>
<td>154.08±2.35**</td>
<td>250.2±4.61**</td>
<td>43.12±0.90**</td>
<td>50.08±0.91**</td>
<td>32.44±1.11**</td>
</tr>
<tr>
<td>III</td>
<td>AEBV(200mg)</td>
<td>125.82±1.79**</td>
<td>237.6±1.96*</td>
<td>40.64±0.40*</td>
<td>47.53±0.39*</td>
<td>34.47±0.36**</td>
</tr>
<tr>
<td>IV</td>
<td>AEBV(400mg)</td>
<td>113.92±1.23**</td>
<td>229.2±2.56**</td>
<td>38.35±0.62**</td>
<td>45.83±0.51**</td>
<td>37.37±0.42**</td>
</tr>
<tr>
<td>V</td>
<td>Sibutramine(5mg)</td>
<td>77.36±1.45**</td>
<td>192.2±1.92**</td>
<td>29.37±0.39**</td>
<td>38.46±0.39**</td>
<td>45.18±0.41**</td>
</tr>
</tbody>
</table>

Values are mean ± SEM of 6 animals. Statistical significance test for comparisons was done by ANOVA, followed by Dunnet’s test. Comparisons were made between: a) Group I vs Group II, III, IV, V. **p value< 0.01, *p value <0.05, ns non-significant.
Table 5. Atherogenic index and percentage protection in various groups of rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>Treatment</th>
<th>Atherogenic index</th>
<th>Percentage protection (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>Control (Normal saline)</td>
<td>4.00</td>
<td>-</td>
</tr>
<tr>
<td>Group II</td>
<td>Diet Control</td>
<td>7.71</td>
<td>-</td>
</tr>
<tr>
<td>Group III</td>
<td>AEBV (200mg)</td>
<td>6.61</td>
<td>14.31</td>
</tr>
<tr>
<td>Group IV</td>
<td>AEBV (400mg)</td>
<td>6.13</td>
<td>20.50</td>
</tr>
<tr>
<td>Group V</td>
<td>Sibutramine (5mg)</td>
<td>4.25</td>
<td>44.90</td>
</tr>
</tbody>
</table>

Table 6. Effects of AEBV on Liver function test and Serum glucose in rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>Treatment</th>
<th>SGOT Levels(Iu/L)</th>
<th>SGOT Levels(Iu/L)</th>
<th>Blood glucose(mg/dl)</th>
<th>Total protein(mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Control</td>
<td>30.00±0.58</td>
<td>12.00±0.57</td>
<td>61.74±0.79</td>
<td>5.43±0.07</td>
</tr>
<tr>
<td>II</td>
<td>Diet control</td>
<td>46.00±1.86**</td>
<td>25.33±1.40**</td>
<td>92.90±0.86**</td>
<td>12.45±0.12**</td>
</tr>
<tr>
<td>III</td>
<td>AEBV(200mg)</td>
<td>37.83±1.42**</td>
<td>16.17±0.60**</td>
<td>88.23±0.44**</td>
<td>6.53±0.09**</td>
</tr>
<tr>
<td>IV</td>
<td>AEBV(400mg)</td>
<td>46.00±1.36ns</td>
<td>25.00±0.68ns</td>
<td>80.63±0.35**</td>
<td>6.41±0.04**</td>
</tr>
<tr>
<td>V</td>
<td>(200mg)</td>
<td>63.17±1.10**</td>
<td>20.00±0.57*</td>
<td>80.80±0.42**</td>
<td>5.73±0.08**</td>
</tr>
<tr>
<td>VI</td>
<td>(400mg)</td>
<td>66.00±1.12**</td>
<td>22.33±0.76ns</td>
<td>81.07±0.42**</td>
<td>4.49±0.07**</td>
</tr>
<tr>
<td>VII</td>
<td>Sibutramine(5mg)</td>
<td>80.83±1.64**</td>
<td>44.55±2.21**</td>
<td>72.09±0.43**</td>
<td>4.25±0.06**</td>
</tr>
</tbody>
</table>

Values are mean ± SEM of six animals. Statistical significance test for comparisons was done by ANOVA, followed by Dunnet’s test. Comparisons were made between: a) Group I vs Group II. b) Group III, IV, V vs Group II.

**p value < 0.01, *p value < 0.05, ns non-significant

Discussion and Conclusion

Obesity is a severe metabolic disorder, characterized with increase in energy intake and a decrease in energy output concerning body weight and glucose metabolism. It may be underlying reason of cancers of breast, endometrium, colon and prostate. It is an increasing problem in modern society, due to the adoption of rapid lifestyles which results in high dietary intake of carbohydrates and fat accompanied by reduced energy consumptions[13]. Dietary obesity can be induced readily in laboratory rodents by giving high fat diets or cafeteria diets. Obesity also occurs in rodents given a palatable sugar solution in additional to laboratory chow. These animals consume only about half of as much chow as animals not given sugar, additional calories from sugar solution generally results in greater total dietary energy intake and development of profound obesity[14].

The quantitative phytochemical investigation on the AEBV was found to contain Alkaloids, carbohydrates, protein, sterols, flavanoids, glycosides, saponins, tanins. It has been reported that sterols, flavanoids, saponins, tanins lowers cholesterol levels and have anti-oxidant and anti-diabetic potentials. Due to these constituents it was found to be useful in treatment of obesity. But the compound which causes weight reduction has to be identified[15,16].

In the present study, the anti-obese activity of \textit{Bauhinia variegata} Aqueous extracts were studied using dietary animal’s model of Obesity. The present pharmacological investigation revealed that HFD elicited significant increase in body weight, food intake, serum levels of glucose, protein, total cholesterol, LDL Cholesterol, VLDL cholesterol, Triglycerides, SGOT, SGPT. Treatment with AEBV resulted in reduction of body weight in HFD fed rats indicating that the extracts possess weight reducing property. Since obesity is associated with hyperphagia, HFD fed rats consumed more food than normal diet fed rats. AEBV effective in decreasing daily food intake in HFD fed rats, indicating that it possess hypophagic property. The increase in rectal body temperature may be attributed to the overall stimulant and thermogenic property of phytoconstituents of the extracts.

Lipids are mostly consumed in the form of neutral fats, which are also known as triglycerides. The triglycerides are made up of a glycerol nucleus and free fatty acids. Triglycerides form major constituents in food of animal origin and much less in food of plant origin. Saturated fats increase blood cholesterol and thereby increase risk of atherosclerosis and coronary heart disease. Monounsaturated and polyunsaturated fats decrease blood cholesterol and reduce blood pressure. There is risk of obesity. Tran’s fats increase LDL and increase risk of atherosclerosis and coronary heart disease[17].

AEBV showed significant reduction in serum levels of total cholesterol, LDL cholesterol, VLDL cholesterol, triglycerides along with significant increase in serum HDL cholesterol levels in HFD fed rats. Considering the enhancement of cardioprotective lipid HDL, it can be concluded that root of \textit{Bauhinia variegata} is a potent cardioprotective agent[18].

Blood glucose levels were also significantly decreased in both doses of aqueous extracts. Total protein levels also decreased significantly in both doses but effect was more observed at higher dose levels of 400 mg/kg /p.o. The Enzyme SGOT, SGPT increased in group of animals treated with HFD and of AEBV (400 mg/kg/p.o) decreases the SGOT, SGPT levels was observed. There was no significant change at 200mg/kg/p.o of AEBV.

From the observations of the study performed, it could be predicted that \textit{Bauhinia variegata} root extracts exerted significant anti-obese activity due to its hypophagic, hypoglycaemic and hypolipidemic effect in rats fed on high fat diet. The long history of use of \textit{Bauhinia variegata} may have therapeutic and protective applications in the treatment of these disorders. Further
investigation involving measure of enzymes in lipid pathways and hormones would ascertain the exact mechanism of anti-obese effect and to figure out the therapeutic potential of *Bauhinia variegata* root in the treatment of obesity. This ensures an understanding of the mechanism involved in the treatment of these disorders. Further there is need to identify exact phytoconstituents responsible for the activity at brain level and to formulate poly herbal anti-obese preparation containing *Bauhinia variegata* extract as main ingredient along with other novel weight reducing and hypolipidemic herbal drugs.

References