Abuse of pharmaceutical drugs – antibiotics in dairy cattle in Kosovo and detection of their residues in milk

Zana Sulejmani¹*, Agim Shehi², Zehra Hajrulai³, Elida Mata²
¹University of Prishtina, Faculty of Medicine, Department of Pharmacy - Kosovo; ²University of Tirana, Faculty of Medicine, Institute of Public Health - Albania; ³University of Skopje, Faculty of Veterinary Medicine, Veterinary Institute - Macedonia.

* z_sulejmani@yahoo.com

Abstract

Introduction: Pharmaceutical drugs – antibiotics are given to livestock by veterinarians for the prevention or/treatment of disease, but also as a stimulant for animal growth and conversion. Regardless of the way the drugs are inserted into the body of the animal, there will always be residual risk in milk which exceed the maximum level allowed. Thus, given that milk contains high level of drug residue, it can lead to health disorders in humans and in some cases even death.

Aim of study: The main aim of this study is to discover the use of pharmaceutical drugs – antibiotics in dairy cows and to detect betalactam and sulphonamide residues in milk.

Methods and materials used: In 2011, during the period January to August, 80% of dairy farms in the Republic of Kosovo were visited and 127 milk samples were collected from cows treated with pharmaceutical drugs – antibiotics. Samples were analysed in the laboratories of the Veterinary Institute in Skopje using “Elissa” screening method and “HPLC” confirmatory method.

Results: Of 127 samples of milk, 64 of them were contaminated with betalactam residues, while 24 with sulphonamide residues. Of them, the majority, 15 being beta-lactams and 4 sulphonamides. The study shows that over 70% of the total quantity of milk samples analysed contains residues of drugs, while over 20% of them have passed the maximum residue limit allowed.

Conclusion: 70% of the drugs given to dairy cattle in Kosovo are pharmaceutical – antibiotics. Their residues are present in milk at levels high enough to cause severe damage to the entire public health. We conclude that pharmaceutical drugs – antibiotics that are used in humans should not be used in animals too and their provision should be limited to a reasonable and lawful level.

Keywords: pharmaceutical drugs, antibiotics, milk residues
Introduction

Milk is a food substance and nutritious liquid that is essential for normal growth and development of an organism.

Milk offered for sale is a specific food item that requires strict control and enforcement by all legal regulations and relevant state authorities, that must allow its marketing at home and abroad only through special and official permission[1].

Use of antibiotics in dairy farms, and the use of antimicrobial agents at sub-therapeutic levels in dairy animals have always been considered for application[2]. Even Kosovo, as a new and less developed state, is exposed to uncontrolled use of antibiotics in dairy cattle. So even in this country there is a need to monitor the presence of antibiotic residues in food products such as milk.

However, the visible absence of veterinary structures has caused the spread of uncontrolled use of medications to prevent and treat infections in dairy cattle, and, unfortunately, now its use has become so unprofessional that it interferes in the farmer’s way of giving antibiotics. This, not only, is damaging to the health and well-being of the animal but it affects greatly the health and wellbeing of human consumers too through consumption of animal products such as milk and meat, thus affecting general public health.

Today, in our globalization age, geography is no longer a factor which can prevent serious disease spreading across borders. Liberalization of market, food systems and free movement of people and animals across borders have greatly reduced geographical barriers[3,4].

Antibiotics are vital drugs in the treatment of infectious diseases in humans and animals. They are used to treat and control diseases caused by bacteria, destroying them or stopping their reproduction, and thus overcoming the infection and allowing the infected body to heal. However, their efficiency can decrease from its broad, continuous, and inadequate use. This can happen not just in medicine but also in agriculture[5].

Beta-lactam antibiotics are most commonly used for the treatment of gram positive and gram negative bacterial infections. They have a broad spectrum of bactericidal action hampering the synthesis of bacterial cell-wall[6].

This group includes all antibiotics, which, in their core ring contain â-lactams, such as: penicillin, b) cephalosporin, c) carbapenems and d) monobactams[7].

Sulphonamides are among the oldest groups of antibiotic/antimicrobial agents. They are widely used in the treatment of bacterial diseases of dairy cattle. They have a wide spectrum of bacteriostatic action, affecting gram positive and gram negative organisms[8,9].

Best-known sulphonamides are: sulfadiazine, sulfamethoxazole, sulphanidimide, sulphadoxine, sulfadimethoxine, sulfamerazine, sulphasalazine, silversulfadiazine and sulfisoxazole, which have the sulfonamide structure as their base[10,11].

Both these types of antibiotics dissolve quickly, easily distribute in all tissues and body fluids, by including the cerebrospinal fluid and fetal circulation. About 90% of these antibiotics binds to plasma proteins, and their maximum concentration seen after 3-6 hours. They metabolize in the liver and eliminate by glomerular filtration[12].

The use of antibiotics ignoring any criteria in all cases of disease, be that from cold, viral infection, inflammation or wounding can have a wide negative effect with the drugs left behind in milk and edible tissues. These residues in milk and other food products of animal origin can cause many functional disorders in the human body, such as, for example: a) transfer of bacterial resistance to antibiotics in humans, b) effects of immunopathology, c) carcinogenic effects, d) permanent gene mutation, e) nephropathies or kidney disease, f) liver poisoning, g) reproductive disorders, h) bone marrow poisoning and i) allergic reactions[13].
The aim of the study

The main purpose of this study is to discover the use of pharmaceutical drugs – antibiotics in dairy cattle. Other goal is to detect beta-lactam and sulphonamide residues in the milk manufactured in the Republic of Kosovo.

Material and methods

In order to carry out this research over 80% of dairy farms in the Republic of Kosovo were visited during period January to August of 2011.

In this time 127 samples of raw milk were collected, 39 of them during the winter period and 86 of them during the summer.

Samples were taken only from cows treated with pharmaceutical drugs – antibiotics that were last given to them no longer than 2 weeks before the sample collection.

Search and collection of milk samples was conducted in two seasons of the year: during the winter and the summer. This was done to identify the time period during which these drugs are mostly used.

It is observed that the greatest number of cows fell sick during the summer, apparently due to high temperatures that cause proliferation of bacteria and other parasites in water, food, soil and air, in turn, increasing the number of infections and various diseases in dairy cattle.

The assessment was made through a specific questionnaire, which identified problems in the treatment of cattle with drugs.

Analyses of the samples were done in the laboratories of the Veterinary Institute in Skopje using Elisa screening method and HPLC confirmatory method.

To examine the presence of beta-lactam and sulphonamide residues in the samples of raw milk the method used was ‘Elisa’ for beta-lactams manufactured by Randox-England and for sulphonamides produced by Europroxima in the Netherlands.

Elisa screening method is one of the fastest and most reliable analytical methods for detecting the presence of antibiotics. The testing is easy and shows high sensitivity and fast response.

For the preparation of raw milk samples and in order to detect possible beta-lactams these reagents are used: a) wash buffer (concentrated) of 1 x 32 ml, Randox-England, b) the standards of 6 species, Randox-England, c) conjugate (concentrated) of 3 vials, Randoks-England, d) one shot substrate of 1x15 ml, Randoks-England, e) a bottle of stop solution, Randoks-England and f) re-distilled water.

Whereas, in order to detect sulfonamides these reagents were used: a) ethylacetaat, Merck-Germany, b) iso-octane, Merck-Germany, c) chloroform, Merck-Germany, d) mixture of iso-octane and chloroform in a 2:3 ratio V/V, e) hydrochloric acid 0.1 mol/dm³, Merck-Germany, f) PBS has been prepared by digesting the mixture of 0.77 g Na₂HPO₄ + 1.88 g KH₂PO₄ + 8.94 g NaCl in one litre of distilled water and adjusted to pH of 7.4±0.2 and g) sulfamerazine standard, Sigma-Aldrich.

In this paper all standards and samples are applied microtitre plate replication. For detection of beta-lactams six standards applied on the microtitre plate have the following concentration: a) 0 ng/ml, b) 0.46 ng/ml, c) 1.0 ng/ml, d) 5.6 ng/ml, d) 10.1 ng/ml and f) 58.9 ng/ml. However, for detection of sulfonamides these standards have concentrations, such as: a) 0 ng/ml, b) 0.125 ng/ml, c) 0.5 ng/ml, d) 0.8 ng/ml, d) 2.5 ng/ml and f) 5.0 ng/ml.

To evaluate the screening method “Elisa” for the analysis of beta-lactams and sulphonamides in milk it is necessary to set some parameters on the basis of set criteria and conforming to the requirements and recommendations by the Rules of the Directive no. 96/23/EC[14]. Parameters to be determined are: a) selectivity, b) precision (accuracy), c) reproducibility, d) limit of detection and e) detection capability (CCₐ)[15].

All these parameters are determined by various formulas and their final results are presented in...
Results were calculated by Excel program. The absorbance read becomes a percentage (%) of optical density relative to zero standards B_0 and it is based on the calibration line assigned to each series of standard solutions and has the following formula:

$$y = a + b \ln X$$

y: read signal expressed in % of optical density

X: concentration of the substance and

a and b: coefficients

In every batch of samples analyzed for values of R^2 for beta-lactams must be at least 0.8278, while the sulphonamides R^2 is 0.98.

Limit of detection is determined by the formula:

$$\text{LOD} = X_{\text{average}} + 3\text{SD}$$

The limit of detection (LOD) determined by Elisa method for beta-lactam residues in milk is 1.5 ìg / ml, while for sulphonamide residues is 13.3 ìg / kg.

Meanwhile, through the confirmatory analysis the presence of antibiotic residues continues to be noted in those samples in which the screening method has shown a detection limit higher than normal.

In our case we used the method of High-Performance Liquid Chromatography with Fluorescence Detection, HPLC/FD in order to detect sulphonamide residues only, since it has not been possible to specifically adjust the HPLC/FD device for beta-lactam detection.

In order to carry out the confirmatory method for sulphonamide residues these reagents were used: a) methanol, Sigma-USA, b) acetonitrile, Sigma-USA, c) water, Sigma-USA, d) acetic acid 98-100%, Merck-Germany, e) hydrochloric acid 36-37%, Merck-Germany, f) formic acid 90%, Merck-Germany, g) ammonia 25%, Merck-Germany, h) acetone, Merck-Germany, i) sodium acetate dissolved 0.01 M with pH = 3.5, j) fluorescamine for synthesis, Sigma-USA, k) sulfadimidine analytical standard, SDM 99.8%, Fluke-Switzerland, l) sulfadiazine analytical standard, 99.0% SDZ, Fluke-Switzerland, m) sulfamethoxazole analytical standard, SMX 99%, Sigma-USA and n) sulfisoxazole analytical standard, SXZ 99.95%, Farmabase-Italy.

Sulphonamide concentrations in the analyzed samples were calculated, through the calibration lines for specific sulphonamides, according to these two formula equations:

$$Y = AX + B$$

Y: signal read by the instrument with the appropriate concentration

X: concentration of the respective substance, A – avoiding the calibration curve

B: circuit that separates the (cuts off) curve from the axis,

and:

$$w = \left\{ \frac{(w_s \times V)}{m} \right\} \times 1000$$
The numerical value of the sulphonamide content in μg/ml in absorption test

V: the final volume, from which is transferred the test for analysis in ml

m: the numerical value of the mass in g.

Limits of detection and quantification can be determined through the ratio signal/noise, respectively, through these two equations:

\[LOD = 3 \times SD \quad \text{and} \quad LOQ = 10 \times SD \]

LOD: Limit of Detection

LOQ: Limit of Quantification

SD: Standard Deviation

The method precision for confirmatory analysis of sulphonamide residues is controlled by the values of repeatability and reproducibility of the method. They are calculated on the level of concentration of 100 μg/kg as is the value of the maximum residue limit (MRL) in conformity with the recommendations of the regulation no. 657/2002[16].

Results

During this research study we have observed that for the treatment of sick cattle in Kosovo beta-lactam and sulphonamide antibiotics are used most commonly. However, not that often, other types of antibiotics are used too such as tetracyclines, aminoglycosides and macrolides.

Graph no. 1 presents the percentage of cows treated with beta-lactams:

1. *multiject* = procaine penicillin 100mg + streptomycin 100mg + neomycin 100mg;
2. *neomastipra* = kloksacillin 200mg + ampicillin 75mg;
3. *mastidian forte* = colistin sulphate 400,000 IU + metampicillin 200mg;

It can be seen that penicillin 200mg is one of the beta-lactams mostly used. 93 cows were treated with pencillin being 72.1% of the total, a statistically significant difference from the number of cows not treated with this antibiotic (p<0.01).
Graph no. 2 presents the number and percentage of cows treated with sulphonamide:

- Duofast: 1.6%
- Intertrim 240 mg: 4.7%
- Sulfadimidin WS: 2.3%
- Trimetosul 48%: 9.3%

It can be seen that "trimetosul 48%" is mostly used here. 12 cows or 9.3% of the total were treated with this drug, which shows a statistically significant difference when compared to other sulphonamides used ($\chi^2 = 5.10; p = 0.01$).

Graph no. 3 presents the comparison of beta-lactams residue levels, according to time and delivery of these drugs:

From chart 3 it can be seen that in the first days of their delivery beta-lactam residue level is high and it continues to be so over the following days. By mid-time of their receipt their level significantly lowers, while in last days since their first use the residue level becomes incalculable.

Graph no. 4 presents the comparison of sulphonamide residue level according to time and delivery of these drugs:

Looking at the chart no. 4 it can be clearly seen that sulphonamide residue level remains high in the first days of their delivery and this high level continues during the following days. By mid-time the drug's residue level significantly lowers, while in last days since their first use their residue level is incalculable.

1. *duofast* = sulfadiazinum 200mg + trimethoprim 40mg;
2. *intertrim* = sulfametoksazole 200mg + trimethoprim 40mg;
3. *sulfadimidin WS* = sulfadimidine 1000mg;
4. *trimetosul 48%* = sulfadiazine 400mg + trimetoprim 80mg;
The following tables show chromatograms of sulphonamide residues in 4 samples of raw milk being above the limit of detection (LOD). This limit for the method HPLC/FD is 100 µg/kg.

Sample 62: Sulfadiazina SDZ

Sample 63: Sulfadiazina SDZ

Sample 52: Sulfadiazina SDZ

Sample 13: Sulfadimidina SDM

During result calculation using the above-mentioned formulas we note that:

a) in the sample no.62 sulfadiazine SDZ is detected having a value of 1114.5 µg/kg, which is passes the limit,

b) in sample no.63 sulfadiazina SDZ is also detected with a value of 627 µg/kg,

c) in sample no.52 sulfadiazina SDZ has a value of 227.6 µg/kg and

d) in sample no.13 sulfadimidina SDM is detected
with a value of 109.9 μg/kg.

Discussion

Of the whole drugs given to dairy cattle in Kosovo by veterinarians and farmers 70% were pharmaceutical – antibiotics. Their residues were present in milk at high levels, enough to cause severe damage to the entire public health.

Out of 127 samples of milk, 64 were contaminated with beta-lactam residues, and 24 with sulphonamide residues. Whereas 19 samples already passed the limit of detection, the majority 15, being beta-lactam residues, the rest, 4, sulphonamide residues.

In other words, the study confirms that over 70% of the total of milk samples analysed contain drug residues, with 20% of them already passing the maximum residue limit allowed.

According to a survey conducted in Macedonia in 2000 by Velev 79% of drugs - antibiotics used in veterinary medicine are pharmaceutical drugs[17].

Khaskheli et al argue that in Pakistan, during 2006, 36.5% of the total of their raw milk samples were contaminated with beta-lactam residues[18].

Adesiyun and several co-authors have studied the spread of antibiotic residues in raw milk of cattle in Trinidad, in 1997, indicating that 10.8% of all their analyzed samples were contaminated[19].

Other study carried out in Turkey in 2010 by Kaya and Filazi, confirms the presence of beta-lactam residues in 44% of samples among 200 of them analyzed[20]. In their work in Iran in 2010 Mohammad Hossein Movasag and several co-authors have shown beta-lactam residues in raw milk to be 5%[21].

Moreover, a study conducted by Shitandi in 2001 in Kenya, confirms that out of the total of 1109 raw milk samples analyzed in Kenia, 21% showed contamination with antibiotic residues[22].

In 1991 in Germany Sanders and several co-authors analyzed around 3000 samples of milk and thereby proved the presence of sulphonamide in 1.1% of samples[23].

Also, in Germany, in 2007, on another survey conducted by Kress and several co-authors during a program for identification of positive samples of milk 1.6% of their cases showed a presence of sulphonamide residues[24].

One other survey made in the Netherlands, in 2000, by Abjean applying the examination method in 1100 milk samples of cattle, proves that 9 of the samples or 0.81% of the total were contaminated with sulphonamide residues. However, the survey, failed to show any presence of antibiotic residues when it came to applying the confirmatory HPLC method[25].

A study conducted by Tolentino and several co-authors in 2005 in Mexico using the screening method shows the number of samples detected with sulphonamide residues amounted to 51.3% of the total of analysed samples[26].

Smedley in 1994 when analysing samples using confirmatory method showed that 8 out of the total number were contaminated with sulphonamide residues[27].

Whereas, a study conducted in Turkey in 2007 by Alkan analysed 46 samples using HPLC confirmatory method, and confirmed the presence of sulphonamide residues only in a single sample being above the maximum limit[28].

In a survey by Hyun-Hee Chung in the Republic of Korea in 2008, out of 269 analysed samples using HPLC confirmatory method the presence of sulphonamides was verified only in 4[29].

Conclusion

From the above article we can conclude that pharmaceutical drugs – antibiotics manufactured for human use should not be used in animals too, and the provision of antibiotics should be limited to a reasonable and lawful way.

Veterinarians who treat animals in farms are obliged to follow the conditions and regulations for
keeping and raising animals, and they should use antibiotics as well as other drugs which are approved for animal use only. Measures must be taken to monitor the presence of drug residues in live animals and animal products, which have pharmacological effects and are harmful to human health.

Veterinarian during his treatment of farm animals, as an evidence of a safe conduct must mark the date, time and mode of application of drugs, the matriculation of the treated animal and the drug warranty. The owner or supervisor of the treated animal must administer veterinary medicine only under veterinary control always following the instructions for use given by the manufacturers and checking the expiry date. In this case the owner of the animal is obliged to keep records of medical prescriptions too.

Acknowledgement

We would like to express our thankfulness to all of those farmers, veterinarians, owners and their families that helped us without laziness in collecting milk samples.

References