Hypolipidemic potential of plants used in Cuba

García Mesa, M.
National Institute for Angiology and Vascular Surgery, 1551 Calzada del Cerro, 12000 Cerro, Havana, Cuba
milagros.mesa@infomed.sld.cu

Abstract

Dyslipidemia is a group of asymptomatic diseases due to abnormal concentrations of total cholesterol, low-density and high-density lipoproteins bound cholesterol (LDL-C and HDL-C respectively) and/or triglyceride in blood. It is a risk factor for thrombosis on atherosclerotic lesions, leading to atherothrombotic diseases (myocardial infarction, stroke or lower limb occlusive disease). Therefore, the therapeutic goal of hypolipidemic treatments is to reach a low cardiovascular risk status by the reduction of total cholesterol, triglyceride and LDL-C and the increase of HDL-C levels. New therapeutic options could be obtained from plants. Consequently, this review is focused on the pharmacological evidence available about the hypolipidemic potential of medicinal plants used in Cuba in order to provide a scientific basis for the development of plant-derived hypolipidemic products in this and other countries with environmental and/or cultural similarities. Plant profiles presented include information about the scientific and common names, botanical family, experimental conditions used, results obtained, mechanisms of action and active compounds. Data from fifteen plant species are described. The nine botanical families they belong to, mainly Liliaceae, Lamiaceae and Rutaceae, emerge as possible sources for hypolipidemic drug discovery. The information available about preparations from Allium sativum L. bulbs, Citrus paradisi L. fruits and Hibiscus sabdariffa L. flowers suggest that they are the most suitable for this purpose currently. Mechanisms of action and active agents should be elucidated for all plant products presented, manufacture methods (from plant collection to pharmaceutical technology) be standardized and its clinical efficacy and safety for patients confirmed.

Key words: Dyslipidemia, lipid, traditional medicine, pharmacology
Introduction

Dyslipidemia is a group of asymptomatic diseases due to abnormal concentrations of total cholesterol, low-density and high-density lipoproteins bound cholesterol (LDL-C and HDL-C respectively) and/or triglyceride in blood that increase the risk for thrombosis on atherosclerotic lesions (atherothrombosis) at the artery wall that reduces the arterial lumen, the blood flow inside it and the oxygen supply to the affected organs. Leading to clinical events that are responsible for high number of deaths and disabilities worldwide (myocardial infarction, stroke or lower limb occlusive disease). Thus, the therapeutic goal of hypolipidemic treatments is to reach and maintain a low cardiovascular risk status by the reduction of total cholesterol, triglyceride and LDL-C and the increase of HDL-C levels.

Drugs with proved hypolipidemic efficacy include statins, compounds that inhibit the activity of acetyl-glutaryl-coenzyme reductase (HMG Co-A reductase), the cholesterol synthesis pathway limiting enzyme; fibrates (fibric acid derivatives), by activating the hepatic lipoprotein lipase enzyme induce a reduction of triglyceride formation and increase of triglycerides breakdown and HDL synthesis in the liver; nicotinic acid derivatives (niacin), inhibit lipoprotein lipase activity on adipose tissue leading to a decrease of triglycerides hydrolysis in adipocytes and the synthesis of triglyceride in the liver besides an increment of HDL-C level; cholesterol absorption inhibitors (ezetimibe), biliary acid sequestering agents and omega-3 fatty acids. However, the side effects of some of these products and the high cost of continued treatments with them may limit their use for many patients, therefore, discovering new efficacious, safe and economic hypolipidemic agents is a scientific challenge.

Many known drugs have been primary discovered from plants, suggesting that they could provide opportunities for developing new products. Thus, an analysis the information about plants with this therapeutic potential that are traditionally used in a given country is the first stage of the research strategy aimed to obtain efficacious and safe standardized herb preparations and/or purified drugs.

Atherothrombotic diseases are health problems worldwide. Cardio and cerebrovascular diseases are the second and third causes of death among adult Cuban population and the possibility to count with new therapeutic options against dyslipidemia is a matter of interest. However, there is a lack of information about the hypolipidemic potential of medicinal plants used in this country that would support drug development in Cuba and other countries with environmental and/or cultural similarities. Consequently, this review focused on the results of pharmacological evaluations performed with validated experimental models and/or controlled clinical trials that suggest the possible therapeutic utility of preparations derived from plants used to treat different illnesses in Cuba.

Information was withdrawn from Google Scholar and PubMed data bases using the following search parameters or combinations: “the plant scientific name”, “lipid”, “cholesterol” and “dyslipidemia”, “medicinal plant” “traditional medicine” without applying restrictions with respect to the publication date, the type of the study or the language.

The scientific and vernacular names, botanical families and uses in Cuba of plants with hypolipidemic potentials are summarized in the Table 1. Details of its pharmacological effects, proposed mechanisms of action and active principles are described as follows:

Allium cepa L. (A. cepa)

A. cepa bulb aqueous extract induced the reductions of serum concentrations of total cholesterol, LDL-C and triglycerides when it was orally administered to rats under hypercholesterolemic diet; however triglycerides but not cholesterol levels were affected when Streptozotocin-induced diabetic rats under a fat-rich diet were treated with this kind of extract. S-methyl cysteine sulfoxide has been identified as its possible active principle that could provide bulb extracts with an inhibitory effect on HMG CoA reductase activity.

Allium sativum L. (A. sativum)

Hypercholesterolemia was prevented in rats, rabbits, pigs and chicken, orally treated with oil,
aqueous or organic solvents A. sativum bulb extracts during atherosclerosis experimental induction. A hydro-alcohol extract showed total and LDL-cholesterol lowering effect without influence on triglycerides and HDL-C serum concentrations in hypercholesterolemic patients involved in a double-blind randomized-placebo-controlled clinical trials. Inhibition of hepatic HMG-CoA reductase activity, as well as membrane and plasma lipoprotein remodeling, are the proposed mechanisms of action. S-allyl-cysteine sulfoxide, allicin, diallyl, di and trisulphures are the identified A. sativum active principles.

Aloe vera (Linn.) Burn F. (A. vera)
Orally administered A. vera leaf juice and gel inhibited Triton-induced increase of total cholesterol, LDL-C and triglyceride blood concentrations in mice. A. vera leaf aqueous extract had similar effects in normal rabbits, diabetic rats and mice.

Bixa orellana L. (B. orellana)
Diet-, Triton-, fructose and ethanol-induced hyperlipidemia in rats and mice was prevented by oral treatments with B. orellana seed aqueous extracts.

Citrus paradisi L. (C. paradisi)
C. paradisi fruit peel pepsin, orally administered, and showed ant atherosclerotic effect miniature swine. Moreover, diet-induced hyperlipemia was prevented by C. paradisi fruit juice intake in rats. A randomized - controlled clinical trial demonstrated a decrease of cholesterol LDL-C and LDL-C/HDL-C ratio in hypercholesterolemic patients after daily intake of C. paradisi peptin. The flavonoid naringin has been identified as a probable principle active responsible of C. paradisi juice hypolipidemic effect.

Citrus sinensis L. (C. sinensis)
Oral administration of fresh or lyophilized C. sinensis juices to rats and rabbits fed with hyperlipemic diets prevented the increment of total cholesterol, LDL-C and triglycerides in blood and induced the increase of HDL-C levels. A hypolipidemic effect was demonstrated also with hamsters treated with C. sinensis fruit fiber.

Hibiscus sabdariffa L. (H. sabdariffa)
H. sabdariffa flower extract was effective to control blood lipid levels on hypercholesterolemic patients who participated in a randomized-double blind placebo-controlled clinical trial. Furthermore, a triple blind randomized placebo-controlled clinical trial with obese adolescents with dyslipidemia, demonstrated that daily treatment with fine powdered calices of H. sabdariffa induced significant decrease of serum total cholesterol, LDL-C and triglyceride without change of HDL-C levels. Anthocyanins have been identified as the possible contributors to the pharmacological effect of H. sabdariffa preparations.

Morinda citrifolia L. (M. citrifolia)
M. citrifolia leaf, fruit and root hydro-alcohol extracts given orally to rats with experimentally induced hyperlipidemia was able to induce the reduction of serum lipid levels. A similar effect was observed in hamsters under a high-fat/cholesterol diet that were treated with M. citrifolia fruit juice. Decreases in LDL and increases in HDL, were observed in adult heavy smokers who participated in double blind, placebo-controlled clinical trial designed to investigate juice influence on hyperlipidemia.

Ocimum basilicum L. (O. basilicum)
Prevention of Triton WR-1339-induced hyperlipidemia was demonstrated on rats and mice treated with O. basilicum leaf aqueous extract or its water, ethyl acetate and methanol sub-fractions concomitantly with the hiperlipemic stimulus. Similar results have been obtained with other experimental models like diet-induced hiperlpiemia and Streptozotocin-induced diabetes in rats. An ethanol whole plant extract inhibited LDL-C oxidation, LDL-induced fat accumulation, as well as the esterification of de novo synthesized cholesterol and the number of scavenger receptors in macrophages in vitro.

Ocinum sanctum L. (O. sanctum)
O. sanctum leaf extracts and essential oils showed lipid lowering effects in rats and rabbits fed hypercholesterolemic diets. Inhibition of lipid peroxidation has been demonstrated in vivo and in vitro.
Persea americana Mill. (P. Americana)

Diet-induced hyperlipidemia was inhibited and plasma HDL-C concentration increased in rats treated with P. americana leaf water and methanol as well as fruit extracts. Additionally, the hypolipidemic effect of the treatment with fruit flour was demonstrated with mice on a hyperlipidemic diet.

Salvia officinalis L. (S. officinalis)

Reduced serum total cholesterol and LDL/HDL-C ratio was demonstrated in rats ad libitum intake of S. officinalis aqueous leaf extract. A double-blinded placebo-controlled clinical trial with hyperlipidemic patients showed a decrease of total cholesterol and LDL-C and increase of HDL-C after treatment with aqueous extract from S. officinalis leaves.

Tamarindus indica L. (T. indica)

Oral treatment with T. indica fruit pulp water extract was able to lower hyperlipidemia and increase serum HDL-C concentrations in hamsters fed with a high-cholesterol diet. More LDL receptor gene expression, decrease in the expression of HMG-CoA reductase gene, as well as prevention of hepatic lipid peroxidation were also induced. On the other hand, lowering of total cholesterol and LDL-C and elevation of HDL-C, but a contradictory increment of triglyceride levels were demonstrated in healthy volunteers who participated in a randomized controlled clinical trial aimed to assess the effect of T. indica dry fruit pulp intake on blood lipids profile.

Tecoma stans Linn. (T. stans)

Rats with Triton WR 1339-induced hyperlipidemia exhibited significant reduction of blood lipid levels after T. stans flower hydro-alcohol extract oral administration. Furthermore, the elevated serum total cholesterol and triglycerides concentrations were attenuated and the HDL-C levels augmented in rats fed with a high-fat diet.

Zingiber officinale Roscoe (Z. officinale)

Apo lipoprotein E deficient mice, rabbits and rats fed with hypercholesterolemic diets showed lower cholesterol levels in serum, heart and aorta, decreased blood lipid peroxidation and/or reduced number of atherosclerotic lesions in aorta after treatment with Z. officinale rhizome ethanol extracts. On the other hand, a double-blind randomized placebo-controlled clinical trial with hyperlipidemic patients significant reductions of total cholesterol and triglyceride and increase of HDL-C plasma concentrations after daily intake of a Z. officinale rhizome dried ethanol extract. Increment of the messenger RNAs pools for LDL and LDL receptors and reduction of hepatic HMG-CoA reductase activity, suggest that Z. officinale extract hypolipidemic effect is mediated by control of LDL receptor and cholesterol biosynthesis.

Discussion

This study has presented a list of 15 plant species with hypolipidemic potential that are used as folk remedies for different illnesses in Cuba. Pharmacological evidence have been obtained from the assessment with animals under experimental models of hyperlipidemia and/or normal or dyslipidemic human subjects. The nine botanical families that these plant species belong to, mainly Liliaceae, Lamianae and Rutaceae, emerge as possible sources to discover new therapeutic options for dyslipidemia. Statin-like activity has been shown by some plant products; however, the characterization of the mechanisms of action and chemical constituents responsible for the pharmacological effects of these natural preparations is still limited and more investigation must be carried out in this respect.

Though dyslipidemia is an asymptomatic disease that has been recognized as atherothrombotic risk factor in a relatively recent date, the popular use of H. sabdariffa, B. orellana, O. basilicum, A. sativum and C. sinensis to reduce blood lipid concentrations has been reported in Cuba, Brazil, Morocco, India and Vietnam respectively. Thus, the pharmacological evidence described here support the Ethnomedical findings and confirm the utility of these studies for drug discovery.

A research strategy for the development of hypolipidemic plant products could be proposed according to the information available as follows: First of all, plant preparations that have been assessed in randomized-controlled trials with patients suffering from hyperlipidemia, secondly those investigated in similar conditions but with normal subjects and thirdly those only studied in pre-clinical conditions.
A. sativum bulb hydro-alcohol extract could be considered in the first place since its possible mechanism of action and active principles have been identified, followed by C. paradisi fruit peptin, as well as H. sabdariffa flower extract and powder, because the knowledge about their possible active constituents would help standardizing manufacture conditions. Thus, they are the most suitable for this purpose currently. Taking in account the influence of environmental conditions on plant metabolism and on the concentrations of metabolites responsible for the biological effects, the information summarized in this work could not be used in the clinical practice until methods for plant products manufacture (from plant collection to pharmaceutical technology) be standardized and its clinical efficacy and safety for patients confirmed.

References

Table 1. Plants with hypolipidemic potentials used in Cuba

<table>
<thead>
<tr>
<th>Scientific name (Family)</th>
<th>Common Name</th>
<th>Traditional uses in Cuba 8-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allium cepa L. (Liliaceae)</td>
<td>Cebolla</td>
<td>Food, inflammation, pain, intestinal parasites, fever, bronchial asthma, gastric disorders, diuretic.</td>
</tr>
<tr>
<td>Allium sativum L. (Liliaceae)</td>
<td>Ajo</td>
<td>Spice, cold, pain and circulatory disorders.</td>
</tr>
<tr>
<td>Aloe vera (Linn.) Burm. f. (Liliaceae)</td>
<td>Sábila</td>
<td>Hepatitis, gastric ulcers, hemorrhoids, bronchial asthma, pneumonia.</td>
</tr>
<tr>
<td>Bixa orellana L. (Bixaceae)</td>
<td>Bija</td>
<td>Spice, bronchial asthma, diuretic.</td>
</tr>
<tr>
<td>Citrus paradisi L. (Rutaceae)</td>
<td>Toronja</td>
<td>Fruit, cold, hypertension.</td>
</tr>
<tr>
<td>Citrus sinensis L. (Rutaceae)</td>
<td>Naranja dulce</td>
<td>Fruit, cold, circulatory diseases.</td>
</tr>
<tr>
<td>Hibiscus sabdariffa L. (Malvaceae)</td>
<td>Flor de Jamaica, Serení</td>
<td>Diuretic, hypolipidemic.</td>
</tr>
<tr>
<td>Morinda citrifolia L. (Rubiaceae)</td>
<td>Noni</td>
<td>Diabetes, hypertension.</td>
</tr>
<tr>
<td>Ocimum basilicum L. (Lamiaceae)</td>
<td>Albahaca blanca</td>
<td>Spice, spasmolytic, emetic, diuretic, cold, diarrhea, cancer, high blood pressure, Sedative, somniferous.</td>
</tr>
<tr>
<td>Ocimum sanctum L. (Lamiaceae)</td>
<td>Albahaca morada</td>
<td>Diabetes, fever, headache, cold, cough, stomachache.</td>
</tr>
<tr>
<td>Persea americana Mill (Lauraceae)</td>
<td>Aguacate</td>
<td>Food, antitussive, emmenagogue, abortive, diuretic.</td>
</tr>
<tr>
<td>Salvia officinalis L. (Lamiaceae)</td>
<td>Salvia</td>
<td>Headache, cold, inflammation, fever, dyspnea, tonic remedy.</td>
</tr>
<tr>
<td>Tamarindus indica L. (Cesalpinaceae)</td>
<td>Tamarindo</td>
<td>Fruit, hepatic disorders, stomach ulcer, hemorrhage, diuretic.</td>
</tr>
<tr>
<td>Tecoma stans Linn. (Bignoniaceae)</td>
<td>Saúco amarillo</td>
<td>Diabetes</td>
</tr>
<tr>
<td>Zingiber officinale Roscoe (Zingiberaceae)</td>
<td>Jengibre, Ajengibre</td>
<td>Spice, anti-vomiting, anti-rheumatic, aphrodisiac, immune-stimulant, tonic, anti-diarrheic, cough reliever.</td>
</tr>
</tbody>
</table>

Table 1. Plants with hypolipidemic potentials used in Cuba