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Abstract

Acetaminophen induced hepatotoxicity is one of the most popular and widely used model for evaluating
synthetic and natural compounds that are assumed to have hepatoprotective effects. In this study, the
hepatotoxicity of acetaminophen has been investigated in animal models of mice and rats. Liver injury was
developed with toxic doses of acetaminophen in fasted mice (500 mg/kg) and rats (800 mg/kg).
Hepatotoxicity was assessed after 12 hours of acetaminophen intoxication. In both mice and rats,
acetaminophen produced considerable histopathological changes that were manifested as extensive
hemorrhage, central vein congestion with endothelium disruption, hydropic degeneration, perivenular
necrosis of hepatocytes, microvesicular steatosis and nuclear changes as karyolysis, pyknosis and
karyorrhexis. These histopathological changes were more marked and exaggerated in mice compared to rats.
The results showed that the extent of hepatic necrosis induced by acetaminophen was more severe in mice
while rats appeared to be relatively resistant. These inter-species differences in susceptibility of
acetaminophen induced hepatotoxicity supports the use of mice as an appropriate and clinically relevant
hepatotoxic animal model for testing hepatoprotective agents and to investigate mechanisms of their
therapeutic action.
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Introduction
Drug induced liver injury (DILI) is a most common
reason for discontinuation of a new drug’s
development [1]. DILI is commonly classified into
intrinsic vs. idiosyncratic hepatotoxicity and the
latter further into allergic vs. non-allergic. Intrinsic
hepatotoxicity is dose dependent and predictable,
whereas idiosyncratic hepatotoxicity occurs without
obvious dose dependency and in an unpredictable
fashion [2]. Most common drugs involved in DILI are
non-steroidal anti-inflammatory drugs [3], anti-
tuberculosis drugs [4], antibiotics [5],
anticonvulsants [6], anesthetics [7] and herbs [8].
Herbs hepatotoxicity has been associated with
fulminant, acute and chronic hepatitis, cholestasis,
veno-occlusive disease and cirrhosis [9].
Models of liver damage can provide useful tools for
studying acute and chronic lesions of liver including
necrosis (zonal, massive or diffuse), steatosis,
hepatic venular lesions and cirrhosis of several
morphological types [10]. The mouse in-vivo or
primary mouse hepatocytes and the rat model are
frequently used for investigation of compounds that
are assumed to have hepatoprotective effects.
Acetaminophen (APAP) overdose induced
hepatotoxicity is one of the most popular and
clinically relevant experimental in-vivo model as
APAP is a dose dependant hepatotoxicant [11].
APAP hepatotoxicity involves increased apoptosis,
cyclooxygenase-2 generation, reactive metabolite
release and glutathione depletion [12-13].
APAP induced hepatotoxicity is a common
consequence of overdose [14]. APAP hepatotoxicity
is initiated by metabolic activation of APAP to a
reactive metabolite that depletes cellular
glutathione and causing the reactive metabolite to
covalently bind to cellular proteins which results in
increased cytosolic calcium levels and reduce
activities of calcium ATPase. Increase uptake of
calcium can lead to reduced mitochondrial
respiration and ATP synthesis. In addition to
reduced cellular ATP levels, mitochondria generate
increased amount of superoxide which can react
with nitric oxide to form peroxynitrite. In the
absence of cellular glutathione, peroxynitrite causes
extensive protein oxidation and nitration which may
induce further mitochondrial dysfunction and
eventually lead to irreversible damage and severe
loss of cellular ATP. These events culminate in
oncotic necrosis of hepatocytes [15].
In this study a comparison of histopathological
changes induced by acetaminophen in the liver of

animal models of mice and rats is presented.

Materials and Methods
Chemicals
Acetaminophen (Bryon Pharmaceuticals Pvt Ltd),
tween 80 (BDH Chemical Ltd., Poole, UK),
commercial grade ethanol (Khazana sugar mills,
Pakistan), xylene (Analytical reagent A3523, Lab-
Scan, Ireland), paraffin wax (Bio-Optica, Milano,
Italy), 10% neutrally buffered formalin and Harris
hematoxylin and eosin stain were prepared
according to the procedures of laboratory methods
in histotechnology [16].

Animals
Balb C mice (20-30 gm) and Sprague Dawley rats
(150-200 gm) of either sex, maintained in a 12 hr
light/dark cycle at 22 ± 2 oC were randomly selected
and divided into four groups of six animals each. The
animals were kept on fasting overnight before
treatment. Experiments on animals were performed
in accordance with the UK Animals (Scientific
Procedures) Act 1986 and according to the rules and
ethics set forth by the Ethical Committee of the
Department of Pharmacy, University of Peshawar.
Approval for the study was granted vides letter
number Pharm/EC/446.

Treatment
Mice and rats were assigned to groups I, II and III, IV
respectively. Hepatic injury was induced with either
APAP (500 mg/kg body weight, i.p., in 20% tween 80)
in mice [17] or APAP (800 mg/kg body weight, i.p., in
1% tween 80) in rats [18]. Groups I and III served as
control and were administered with 20% and 1%
tween 80 vehicle respectively.

Histological evaluation
After 12 hours of acetaminophen administration, the
animals were killed by cervical dislocation and liver
from each animal was removed and fixed
immediately in 10% neutrally buffered formalin. The
tissues were dehydrated in graded ethanol solutions
(50, 70, 80, 90, two changes each of 100%), cleared
in two changes each of 100% xylene and were
infiltrated and embedded in paraffin wax. Tissue
blocks were sectioned at 4 μm on a rotary
microtome (SLEE Mainz CUT 5062, Germany) and
were stained with Harris hematoxylin and eosin (H &
E) for microscopic observation (Labomed Lx400 with
digital camera iVu 3100, USA). Histological changes
were scored as none (–), mild (+), moderate (++), or_______________________________________
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severe (+++) damage.

Results
Acetaminophen induced histopathological changes
in the liver of mice
Figure 1 (A1 and A2) shows the normal histology of
liver after treatment with 20% tween 80 vehicle.
The central vein (CV) appeared in the middle of
hepatic lobule and was bounded by an intact
endothelium. From the central vein, cords of
hepatocytes extended toward the periphery of the
lobule. The hepatocytes were separated by small
sinusoidal spaces (small arrows) in which red blood
cells and small number of lymphocytes were visible.
These sinusoidal spaces were bounded by a
discontinuous endothelium (small arrow). The
hepatocytes have intact cell membrane and
because of slight glycogen depletion, variation in
the eosinophilic appearance of their cytoplasm was
evident.
Figure 1 (B1 and B2) shows the major
histopathological changes after treatment with
acetaminophen. The hepatic lobules showed
extensive centrilobular coagulative necrosis with
increased eosinophilia. Severe hemorrhage was
observed mostly in zone 1 of the hepatic lobule.
The sinusoids were dilated and endothelium of the
central veins was destroyed. The centrilobular
hepatocytes showed severe ballooning
degeneration. The sinusoids were heavily congested
with red blood cells and lymphocytes. The cell
boundaries were ill defined and most nuclei were
darkly stained. The amount of heterochromatin
increased at the periphery of the nuclei. The nuclei
showed extensive karyolysis, pyknosis and
karyorrhexis. Microvesicular steatosis was visible
throughout the hepatic lobule.

Acetaminophen induced histopathological changes
in the liver of rats
Figure 2 (A1 and A2) shows the normal histological
appearance of hepatocytes after treatment with 1%
tween 80 vehicle. The central vein appeared in the
middle of the hepatic lobule. Normal cords of
hepatocytes radiate from the central vein toward
the periphery of the lobule. The central vein was
bounded by an intact endothelium. The central vein
as well as the sinusoidal spaces between the
hepatocytes contained numerous red blood cells.
These sinusoidal spaces were lined by discontinuous
endothelial cells. The hepatocytes have intact cell
boundaries and their cytoplasm appeared granular

due to deposition of glycogen. Nuclei having
interspersed chromatin material were visible in the
middle of hepatocytes.
As shown in figure 2 (B1 and B2), treatment with
acetaminophen was associated with extensive
hemorrhage throughout the hepatic lobule. The
sinusoidal spaces were dilated and were heavily
lodged with red blood cells and lymphocytes. Cell
boundaries of majority of hepatocytes remained
intact however their cytoplasm appeared whitish due
to depletion of glycogen. The hepatocytes showed
extensive eosinophilia with occasional
macrovesicular as well as generalized microvesicular
steatosis. Perivenular lymphocytic aggregations
appeared throughout the hepatic lobule. The central
veins were congested with red blood cells and their
endothelium was detached into the lumen. The
nuclei showed hyperchromatosis with the presence
of pyknosis and karyorrhexis.

Severity of acetaminophen induced hepatotoxicity
in mice and rats
Table 1 shows the severity of hepatotoxicity induced
by acetaminophen in mice and rats. Acetaminophen
treatment in mice was associated with more
exaggerated histopathological changes and includes
extensive hemorrhage, central vein congestion with
endothelium disruption, hydropic degeneration,
perivenular necrosis of hepatocytes, microvesicular
steatosis and nuclear changes. In comparison to
mice, acetaminophen treatment has only modest
effects on the liver morphology in rats other than
marked glycogen depletion, hemorrhage, congestion
of central veins and lymphoid aggregates in the
portal tract. Furthermore, acetaminophen
hepatotoxicity in rats was associated with increase
lymphocytic infiltration and macrovesicular steatosis.
These results showed that the extent of coagulative
necrosis of hepatocytes induced by toxic doses of
acetaminophen was more severe in mice as
compared to rats.

Discussion
In this study, animal models of acetaminophen
induced liver injury were compared in mice and rats.
Experimentally induced in-vitro and in-vivo liver
damage models have been widely tested that allows
studies of liver diseases [19-21], accidental and
industrial toxicity [22-24], studies of hepatic
physiology [25-26], pathology [27-28] and
regeneration [29-30], development of diagnostic
tools [31] and screening of medicinal agents [32-34]._______________________________________
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In-vitro models include the use of cultured
hepatocytes derived from rodent [35-36] or human
[37-38], liver slices [39], immortalized cell lines [40-
41] and isolated liver [42-43], while the in-vivo
models used whole animals such as mice [44], rats
[45], guinea pigs [46], hamsters [47], minks [48],
dogs [49], calves [50], cats [51], pigeons [52],
rabbits [53], horses and sheep [54]. These models
have their own advantages and disadvantages, for
example the use of cultured hepatocytes play an
important role especially in the earliest part of the
pre-clinical studies but due to genetic instability,
limited replicative capacity, short life and donor
dependant variation have reduced their
applications [55]. The use of small animals such as
mice or rats are useful as they are easily managed
and present minimal logistical, financial or ethical
problems, however, the results obtained from these
animals are of limited applicability to human beings
due to differences in the anatomical features of the
liver and their more rapid metabolic capacity.
Similarly, large animals such as pigs, sheep or dogs
have anatomical and physiological features similar
to those of human beings however; their use is
restricted by serious logistical and financial
difficulties and is often ethically questionable [56].
Animal models of hepatic injury are the best tools
to investigate liver disease processes and to test
drugs with the ability to interfere with the hepatic
injury process [10].
The most frequently employed hepatotoxins for
induction of liver damage include carbon
tetrachloride [57], pyrogallol [58], aflatoxins [59], d-
galactosamine [60], ethanol [61], thioacetamide
[62] anti-tubercular drugs [63] and acetaminophen
[15]. Carbon tetrachloride (CCl4) is a classical
hepatotoxin, which induces liver cell injury by
metabolites that arise from its cytochrome P450-
dependent metabolism [64]. Considerable liver
injury can be induced by using different doses of
CCl4 [65]. D-galactosamine exerts its hepatotoxicity
by causing intracellular deficiency of uridine
metabolites, presumably in conjunction with other
factors such as endotoxinaemia [66]. D-
galactosamine induces fulminant liver failure by
intraperitoneal injection in doses of 200 mg/kg [67],
400 mg/kg [68], 500 mg/kg [69] and 800 mg/kg
[70]. Aflatoxins are well known for their hepatotoxic
[71-72] and hepatocarcinogenic effects [73-74]. The
formation of highly reactive intermediate by
hepatic cytochrome P450 enzyme system which
binds to nucleophilic sites in DNA, is regarded as a

critical step in the initiation of aflatoxin B1 induced
hepatocarcinogenesis [75]. Thioacetamide is a
hepatotoxin which is conventionally used for
induction of liver cirrhosis [76-77] and acute hepatic
encephalopathy [78-79]. Prolonged oral
administration of thioacetamide induces macro liver
nodules, liver cell adenomas, cholangiomas and
hepatocarcinomas, histologically similar to that
caused by viral hepatitis infection [80]. Pyrogallol is a
strong generator of free radicals [81] and exhibits
hepatotoxicity by causing membrane disintegration
and vacuolation with cytoplasmic rarification,
necrosis and inflammation [82]. Pyrogallol induced
hepatotoxicity can be used as a model to evaluate
hepatoprotective agents that have an antioxidant
property [58]. Antitubercular drugs particularly
isoniazid, pyrazinamide and rifampicin are potential
hepatotoxic [83]. The exact mechanism of anti-
tubercular drugs induced hepatotoxicity is unknown
but metabolism to toxic metabolites are suggested
to play a crucial role at least in the case of isoniazid
[84]. Evidence of liver injury appears on treatment
with isoniazid at a dose of 100 mg/kg for 21 days in
rats [85] and combination of isoniazid (50 mg/kg) and
rifampicin (100 mg/kg) in mice [86]. Acetaminophen
hepatotoxicity is manifested after an overdose that
leads to the formation of toxic metabolite N-acetyl-
benzoquinoneimine by the cytochrome P450 oxidase
system, which causes apoptosis and necrosis by
formation of radicals and activation of Kupffer cells
[15, 87]. A standardized experimental model of
acetaminophen induced liver damage is difficult to
devise because of considerable species and age
dependant variation in the presence and efficacy of
the cytochrome P450 oxidase system of the
hepatocytes [56].
The liver is the largest gland in the human body and
is a unique organ anatomically located to serve its
dual role in metabolic and biochemical
transformation reactions. The vulnerability of the
liver to injury is a function of its anatomical proximity
to the blood supply and digestive tract and to its
ability to concentrate and biotransform xenobiotics
[10]. Drugs, or their active metabolites, may have a
direct toxic effect or induce an immune reaction to
cellular proteins. Direct effects lead to predictable,
dose dependent toxicity while immune reactions are
dose independent, occur rapidly and are associated
with hypersensitivity phenomena [1]. Intoxication by
acetaminophen is among the most frequent causes
of acute liver failure [88] and is widely used as a
model of liver damage [89-91]._______________________________________
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Clinically fulminant acetaminophen hepatotoxicity is
manifested as confluent centrilobular coagulative
necrosis, hydropic vacuolization and macrophage
infiltration followed by regeneration activity [92-
95]. In this study, treatment with an overdose of
acetaminophen in mice and rats was associated
with extensive centrilobular coagulative necrosis of
hepatocytes, severe hemorrhage, destruction of
endothelium, dilatation of sinusoids with infiltration
of lymphocytes and red blood cells, microvesicular
as well as macrovesicular steatosis and glycogen
depletion.
The nuclei exhibited chromatin condensation,
karyolysis, pyknosis and karyorrhexis. These results
are similar to those observed previously in mice
[96-97] and rats [98]. Acetaminophen induced
histopathological changes started in the
centrilobular zone and increased in severity and
distribution over time [99]. The elicited
ultrastructural changes include proliferation,
dilatation and fragmentation of endoplasmic
reticulum and Golgi apparatus, giant mitochondria
with pleomorphism having paracrystalline
inclusions and dense matrical granules, cytosol
exhibits vacuolization, glycogen depletion and
steatosis while the nucleus showed karyolysis,
chromatin condensation/ margination (apoptosis)
[92]. Acetaminophen induced liver damage can be
a useful model for the study of various
histopathological changes including necrosis (zonal,
massive or diffuse) [94-95, 100], steatosis [96],
cirrhosis and lipofuscin deposition [101], lymphoid
aggregation and neoplastic nodules [102].
Necrosis may predominantly involve a particular
liver zone because the enzymes involved in drug
metabolism are often zonally distributed or because
toxicity depends on the oxygen gradient across liver
zones. The clinical manifestations of necrosis
depend on its extent and duration. Microvesicular
steatosis occurs as a consequence of direct toxicity
on the mitochondria and their oxidative processes.
Macrovesicular steatosis corresponds to triglyceride
accumulation, due to defects in lipoprotein
metabolism, damage to plasma membrane or
increased lipid delivery to hepatocytes consequent
on increased synthesis or mobilization. In hepatic
venular lesions, there is direct acute or chronic
injury to the venular endothelium and zone 3
hepatocytes [1].
Acetaminophen induced hepatotoxicity varies
considerably among species. It is generally believed
that the major determinant of species differences is

the rate of conversion of acetaminophen to a toxic
metabolite, N-acetyl-p-benzoquinoneimine [103].
Therefore, sensitive species form higher amounts of
covalently bound adducts and glutathione conjugates
of acetaminophen and lose hepatic glutathione more
rapidly than resistant species [104]. The interspecies
differences in xenobiotic metabolism are due to the
absence or presence of a particular reaction unique
to a single species, but more often they are a
reflection of variations in the relative extents of
competing reactions for the compound [105].
Hamsters and mice are most sensitive, while rats,
rabbits and guinea-pigs are resistant to
acetaminophen induced liver injury [106]. Moreover,
the severity of toxicity is increased or decreased by
cytochrome P450 inducers or inhibitors respectively
[107-108].
The pharmacological activity, metabolism and
toxicity of many drugs or xenobiotics often depend
on the gender of all strains of rats and some strains
of mice [10]. In this study, the severity of
acetaminophen induced histopathological changes in
liver was compared in mice and rats. The extent of
coagulative necrosis was more severe in mice and
was exemplified by extensive endothelium disruption
lining the central veins, hydropic degeneration and
cytolysis of hepatocytes, microvesicular steatosis and
karyolysis, pyknosis and karyorrhexis of nuclei.
Although the basic integrity of hepatocytes in rats
remained intact, however the liver was more
vulnerable to glycogen depletion, dilatation of
sinusoidal spaces with lymphocytic infiltration,
macrovesicular steatosis and perivenular aggregation
of lymphocytes after intoxication with
acetaminophen.
Miller and others [109] studied liver slices obtained
from rat and hamster after intoxication with
acetaminophen. They observed that acetaminophen
induced discrete damage to the centrilobular region
of the liver in hamster but not in rat species. The lack
of susceptibility to the hepatotoxic effects of
acetaminophen in rats can be explained by metabolic
differences. Peter Moldeus [110] studied
acetaminophen metabolism and toxicity in isolated
hepatocytes from rat and mouse. He observed that
only hepatocytes isolated from mouse lost integrity,
measured as increased permeability of the cell
membranes, upon incubation in the presence of
acetaminophen.
Moreover, the rate of glutathione conjugate
formation increased about three times in rat
hepatocytes however, only half of that is induced in_______________________________________
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hepatocytes from control mouse. The increase
susceptibility of mouse to acetaminophen induced
hepatic injury is due to the rate of N-hydroxylation
of acetaminophen by the hepatic microsome. An
increase in N-hydroxylation enhances the need for
reduced glutathione, and glutathione depletion in
the liver precedes marked increases in covalently
bound acetaminophen. Formation of metabolites
covalently bound to microsomal proteins and
depletion of hepatic glutathione were highest in the
mouse but only minor extents of covalent binding
and depletion of glutathione were observed in the
rat [111]. The rat is protected by a relatively low
capacity to metabolically activate acetaminophen to
its toxic metabolite [109] as well as a high capacity
to clear acetaminophen via the nontoxic pathways
of sulfation requiring the availability of 3'-
phosphoadenosine 5'-phosphosulfate [112] and
glucuronidation due to the involvement of multiple
UDP-glucuronosyltransferase isoforms especially
1A7 [113]. Acetaminophen induced liver injury,
especially in mice, is an attractive, experimentally
convenient and clinically relevant model for
evaluating the therapeutic potential of synthetic
and natural products purported to be
hepatoprotective [11].

Conclusion
There are a large number of chemical agents and
animal models that have been used for the
induction of hepatotoxicity of several pathological
types. Each of these chemicals and models has
significant advantages with respect to specific
scientific questions. The animal model of
acetaminophen induced hepatic injury is the best
and widely used experimental model. In this study
acetaminophen intoxication in mice was associated
with severe histopathological changes in liver while
the rats appeared to be relatively resistant. These
findings conclude that the toxicity induced by
acetaminophen overdose highly depends on the
animal model applied and support the use of
acetaminophen induced liver injury in mice as an
appropriate model for testing hepatoprotective
agents and to investigate mechanisms of their
therapeutic action. Further studies should be
conducted to improve the validity of this animal
model as the mechanisms of acetaminophen
hepatotoxicity are extremely complex and the
interpretation of in-vivo data is difficult.
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Figure 1: Histopathological evaluation of acetaminophen induced hepatotoxicity in mice (H & E; A1, B1; 100x and
A2, B2; 400x original magnification). (A1 and A2): Photomicrograph of a section of liver from a mouse treated with
20% tween 80 vehicle showing normal cords of hepatocytes (large arrows) radiating from the central veins (CV)
which are bounded by an intact endothelium (arrow head). Mild glycogen depletion (asterisk) and sinusoidal
congestion (small arrows) was evident throughout the hepatic lobule. (B1 and B2): Photomicrograph of a section
of liver from a mouse treated with acetaminophen showing extensive centrilobular necrosis (large arrows),
hydropic degeneration (small arrows), severe hemorrhage (asterisks) with congestion of sinusoidal spaces,
destruction of central vein (CV) endothelium, karyolysis, pyknosis and karyorrhexis of nuclei (arrow heads).
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Figure 2: Histopathological evaluation of acetaminophen induced hepatotoxicity in rats (H & E; A1, B1; 100x and
A2, B2; 400x original magnification). (A1 and A2): Photomicrograph of a section of liver from a rat treated with 1%
tween 80 vehicle showing normal appearing central vein (CV) bounded by an intact endothelium (arrow head)
having red blood cells in its lumen (asterisk). Parallel cords of hepatocytes radiate from the central vein towards
the periphery of the hepatic lobule and are separated by sinusoidal spaces (small arrows) which exhibit mild
congestion. (B1 and B2): Photomicrograph of a section of liver from a rat treated with acetaminophen showing
extensive glycogen depletion (asterisks), perivenular aggregation of lymphocytes (arrow heads), chromatin
condensation in nuclei, severe hemorrhage with mild dilatation and congestion of sinusoidal spaces (small
arrows) and central vein (CV).
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Histopathological
findings

Mice Rats

Group I Group II Group III Group IV

Glycogen depletion + ++ - +++

Hemorrhage - +++ - +++

Congestion + +++ + +++

Endothelium disruption - +++ - ++

Sinusoidal dilatation - + - ++

Hydropic degeneration - +++ - +

Cytolysis - +++ - +

Lymphocytic infiltration - + - ++

Perivenular necrosis - +++ - ++

Microvesicular steatosis - +++ - ++

Macrovesicular steatosis - + - ++

Karyolysis - +++ - +

Pyknosis - +++ - +

Karyorrhexis - +++ - +

Lymphoid aggregates in 
the portal tract

- - - ++

Table 1: Severity of acetaminophen induced hepatotoxicity in mice and rats

(–) none; (+) mild; (++) moderate; (+++) severe
Group I (20% tween 80), Group II (APAP 500 mg/kg in 20% tween 80), Group III (1%
tween 80), Group IV (APAP 800 mg/kg in 1% tween 80)


