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Abstract 

Alzheimer’s disease (AD) is a malignant neurodegenerative disorder which causes the destruction of 

brain cells that ultimately results in memory loss and cognitive dysfunction. Deposition of b-amyloid 

fibril, the formation of b-amyloid oligomers, hyperphosphorylation of tau protein, oxidative stress, 

low levels of acetylcholine is reported as the main hallmarks of the disease. To date, current therapy 

is based on cholinesterase inhibition which is mainly symptomatic but the efficacy is limited.  
Phosphodiesterase-4 (PDE4) is an enzyme that aids in the hydrolysis of cyclic AMP (cAMP). It is 

divided into four subtypes known as PDE4A, PDE4B, PDE4C, and PDE4D. Recent studies suggest that 

PDE4 is a promising target for the development of new drugs for various neuronal diseases. In this 

research, pharmacophore-based virtual screening was done to get prominent molecules for 

Alzheimer’s Disease (AD). After virtual screening and toxicity were checked, 145 molecules remained. 

The remaining compounds were subjected to molecular docking studies with three docking 

software. After molecular docking, 21 molecules left and DSX scoring was done for these molecules. 

Among 21 molecules, 9 molecules got selected after DSX and binding interaction was evaluated for 9 

molecules and finally got 3 molecules. Molecular dynamics simulation was performed for these three 

molecules to check their stability where they showed good performance.  

Keywords: Alzheimer’s Disease (AD), Phosphodiesterase-4, Pharmacophore modeling, Virtual 

screening, Rescoring, Molecular dynamics (MD) simulation 
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Introduction 

Alzheimer’s Disease (AD) is said to be the 

most common cause of dementia. According 

to the World Alzheimer’s report, about 35.6 

million people were suffering from AD in 2010 

and there is a possible chance of increasing 

this number to 65.7 million by 2030 and 115.4 

million by 2050 [1]. 

A number of hormones and neurotransmitters 

in signal transduction pathways are mediated 

by cyclic adenosine monophosphate (cAMP) 

and cyclic guanosine monophosphate (cGMP) 

which are two well-known intracellular second 

messengers [2-4]. Phosphodiesterase (PDE), 

an enzyme which is a member of the families 

of cyclic nucleotide liable for the breakdown 

of cAMP or cGMP to 5’-AMP or 5’-GMP [5-7]. 

Till now, 11 families of PDE4 have been 

identified (PDE1-PDE11) and they are 

categorized based on their primary structure, 

their abundance in tissue and their ability to 

hydrolyze. Considering the substrate group, 

PDE families are normally classified in three 

groups, PDE4, PDE7, and PDE8 are specific to 

cAMP whereas PDE5, PDE6 and PDE9 are 

specific for cGMP, On the other hand, PDE1, 

PDE2, PDE3, PDE10 and PDE11 which are 

specific for both substrates and hydrolyze 

both cAMP and cGMP [8-10]. Among all the 

PDE families, PDE4 is thought to be the most 

prominent enzyme that which controls the 

intracellular cAMP [11]. This enzyme is being 

studied as a prominent target for treating 

depressive disorder for a long period. 

Rolipram, a novel inhibitor of PDE4 has shown 

that there is a relation between PDE4 and 

animal’s reaction sensitive to antidepressant 

drugs [12]. Later studies revealed the effect of 

rolipram that showed strong antidepressant 

activity in various preclinical experiments [13]. 

Recent researchers have suggested that PDE4 

can be a good therapeutic target for other 

CNS disorder like Alzheimer’s disease, 

Parkinson’s disease, Schizophrenia and so on 

[14-16]. There are about 20 potent inhibitors of 

PDE4 is available and are using in different 

diseases [17].  

The purpose of this research was to design 

new molecules for AD through in-silico 

approach. For this, pharmacophore-based 

virtual screening, molecular docking, rescoring 

for validation of molecular docking and 

ADMET analysis and binding interaction was 

evaluated. Finally, molecular dynamics (MD) 

simulation was carried out to evaluate the 

actual stability of the hit compounds. The 

pharmacophore model of a protein-ligand 

complex shows the integral interaction 

characteristics which are liable for inducing or 

inhibiting biological response [18]. This 3D-

pharmacophore model describes the 3D 

geometric features of a bioactive compound 

besides its chemical feature. The model is 

used to retrieve bioactive molecules via virtual 

screening [19]. Virtual screening is a useful in-

silico technique for identifying active 

compounds from the chemical databases [20]. 

The combination of the pharmacophore 

model and the virtual screening approach has 

become a very popular and efficient method 

for in-silico drug discovery process [21]. 

Normally, the biological activity of a molecule 

is measured by the affinity of the molecules to 

the targeted receptor which can easily be 

determined through in-silico approach. For 

this purpose, molecular docking simulation is 

used to calculate the binding energy which is a 

beneficial method to predict the pose of the 

compounds and select compound for 

experimental assessment. Two basic steps are 

involved in the molecular docking approach. 

One is predicting the multiple structured 

conformation to the binding pocket and 

another is scoring the pose to rank 

conformation [22,23]. 
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Methods 

Pharmacophore model and database 

generation 

Here, the pharmacophore model was 

generated for one PDE4 protein (PDB ID: 

1RO6) with the software LigandScout with its 

default parameters [24]. To validate the 

model, a small database containing 65 [25] 

known active PDE4 inhibitors and 106 inactive 

compounds were generated. The inactive 

molecules were generated using DUD: E web 

server [26]. After validating the model, we 

took the model for virtual screening.  

Virtual screening 

The pharmacophore model was used against 

three distinct chemical databases for virtual 

screening to get the initial hit molecules. The 

databases are Chembridge library [27], Asinex 

gold and Asinex-platinum Library [28]. After 

completing virtual screening, those molecules 

were taken for further study possessing the 

minimum pharmacophore fit value that we 

fixed. Virtual screening was carried out with 

the software catalyst [29].  

Drug likeness filtration 

Many compounds get removed from entering 

the drug development pipeline due to its poor 

AMDET properties. AMDET properties were 

focused during getting the hit compounds. 

Firstly, we filtered those molecules obtained 

after sorting based on pharmacophore fit 

value by applying the Rule of Five developed 

by Lipinski [30] and secondly, by considering 

several ADMET parameters including Pan 

Assay Interference Compounds (PAINS). The 

ADMET was obtained from FAFdrugs4 web 

server [31].  

Protein structure preparation 

Crystal structure of our selected protein (PDB 

ID: 1RO6) was downloaded from the RCSB 

protein data bank [32]. The attached water 

molecules and other heteroatoms were 

removed. Finally, polar hydrogen and 

Gasteiger charge were added and prepared 

the protein by using AutoDock Tools 1.5.6 [33].  

Ligands preparation 

Schrödinger LigPrep application was used to 

generate 3D coordinates for the ligands 

available after drug-likeness filtration [34]. The 

molecules were saved in SDF format to dock 

with the protein.  

Molecular docking and rescoring 

Molecular docking was carried out to the 

active site of the protein. The active site of the 

protein was GLN A:443, PHE A:446, HIS A:234, 

TYR A:233, ILE A:410 and PHE A:446. During 

the docking simulation, the grid box size was 

X=72.055, Y= 105.177, Z= 70.561, and the center 

was X=21.7245, Y= 94.2185, Z=34.2975 so that 

the whole active site is covered. Docking was 

carried out using PyRx [35], Vega zz [36] and 

AutoDock vina [37]. Finally, to validate the 

docking score, the selected ligands were 

rescored again. This scoring system helped to 

get the final hit compounds. Rescoring was 

done by using DrugScoreX online web server 

[38]. 

Molecular dynamics simulation 

Molecular dynamics simulation was done for 

the final 2 hit compounds to check the stability 

of these compounds. YASARA was used in 

windows 64-bit OS to carry out the simulation 

[39]. Both complexes were cleaned initially 

and optimization of hydrogen bonding was 

done. At constant pressure, the simulation 

was run for 50 ns. AMBER14 N force field was 

applied to obtain the parameters of the force 

field [40-42]. RMSD (Root Mean Square 

Deviation), RMSF (Root Mean Square 
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Fluctuation) and Rg (Radius of Gyration) were 

taken into account to check the relative 

stability of the ligands in the binding site of 

the protein [43-45].  

Result 

The figures below (Figure 1 and Figure 2) 

represent the pharmacophore features 

obtained from LigandScout and the 2D 

structure of the attached ligands. 

Pharmacophore features are generally 

expressed by the following method: Yellow-

colored sphere represents the hydrophobic 

feature. On the other hand, red and green 

arrows represent the hydrogen bond acceptor 

and hydrogen bond donor groups 

respectively. And excluded volumes are 

represented by gray spheres [46].  

To validate the pharmacophore models, the 

generated models were screened against our 

prepared small database where the number of 

known active inhibitors were 65 and decoys 

were 106 and after screening, the receiver 

operating characteristic (ROC) curve (Figure 3) 

was generated. 

The validated pharmacophore model of 1RO6 

was used for getting the novel molecules from 

the databases. A total of 11590 molecules 

were generated during the first screening. 

Then based on specific pharmacophore fit 

value (45), we got 4048 molecules. 

Molecular docking was carried out with three 

software simultaneously. All the molecules 

were docked to our predicted active site of 

the protein 1RO6. Initially, we docked the 

attached ligand rolipram with the protein. 

Then the molecules were docked. 145 

molecules were docked in PyRx, Vega zz and 

AutoDock vina. and those molecules got 

selected that have a more binding score than 

rolipram. 

Molecular dynamics (MD) simulation was 

carried out for 50 ns. Three important features 

known as RMSD (Root Mean Square 

Deviation), RMSF (Root Mean Square 

Fluctuation) and Rg (Radius of Gyration) were 

taken into account to check the relative 

stability of the ligands in the binding site of 

the protein. 

Discussion 

Figure 1 signifies the pharmacophore model of 

1RO6. By analyzing the figure, it is seen that 

the pharmacophore model consists of 11 

features. Among them, one is hydrophobic, 

two hydrogen bond acceptor and the 

remaining is exclusion volume.  For 

hydrophobic feature PHE 446, TYR 233 AND 

ILE 410 residues are involved. GLN 443 is 

associated with the hydrogen bond acceptor 

feature.  

From the receiver operating characteristic 

(ROC) (figure 3) curve that generated during 

the screening shows that the primary 

enrichment factor (EF%) was 2.6 with a good 

AUC (area under the ROC curve) value 1.0. This 

signifies that the pharmacophore model was 

capable of distinguishing between the true 

active and decoy molecules presented in the 

database. The remaining AUC was 1.0, 1.0 and 

0.81 during the 5,10 and 100% of the database 

that screened while the EF was 2.6, 2.3 and 2.0 

for 5, 10 and 100% screening of the database. 

4048 molecules that remained after virtual 

screening were then filtered by applying the 

Lipinski’s rules and ADMET. Finally, 145 

molecules remained that satisfied the given 

criteria.  That means all these molecules have 

the value of LogP less than 5, molecular 

weight less than 500, the number of hydrogen 

bond donors less than 5, the number of 

hydrogen bond acceptors less than 10 and the 

number of rotatable bonds less than 10. For 

ADMET properties, solubility, cytochrome 
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P450 (CYP450) 2D6 inhibition hepatotoxicity, 

HIA, plasma protein binding, AMES 

mutagenesis, PAINS were considered. The 

solubility range for all these molecules is 

between -1 to -5 which states that they have a 

good solubility property [47]. CYP2D6 and 

hepatotoxicity were 0 which means these 

molecules are less toxic and there is less 

chance of causing any interaction. Ames 

mutagenesis for all the molecules are negative 

which implies that the molecules don’t have 

any mutagenic property [48]. The TPSA value 

for all the molecule was below 100 because 

TPSA value less than 100 increase the 

permeability of a molecule [49]. These 145 

molecules were then taken for further study. 

After molecular docking, these 145 molecules 

were filtered again. Binding affinity for 

rolipram was -8.4 kcal/mol in PyRx, -8.6 

kcal/mol in Vega zz and -8.9 kcal/mol in 

AutoDock vina. From PyRx, 49 molecules 

remained having binding affinity more than -

8.4 kcal/mol, 44 molecules from Vega zz 

possessing binding score more than -8.6 

kcal/mol and 41 molecules from AutoDock vina 

having binding score more than -8.9 kcal/mol 

(Table 1). Finally, the molecules obtained from 

these three-docking programs were merged 

and got 21 molecules. 

These 21 molecules were then taken for 

further filtration by rescoring. DrugScoreX 

(DSX) score of rolipram was set as standard 

and then sorted out molecules from 21 

molecules. -17 kcal/mol was the score for 

rolipram. Out of 21 molecules, 9 molecules 

showed better score than rolipram (Table 2). 

We took these 9 molecules for further study.  

In this part of research, 2D structure of the 

selected 9 molecules were generated (Table 

3). 2D interaction of the potent inhibitors of 

the PDE4 shows that ASN B:395, GLN B:443, 

TYR B:233, ILE B:410, PHE B:446, ASP B:392 

and THR B:407 was common among all these 

inhibitors [50]. In case of the selected 

molecule, those molecules were kept which 

were capable of interacting at least five key 

residues out of seven and it was seen that 

three molecules met the requirement. Finally, 

3 molecules remained and these molecules 

were then subjected to MD simulation. 

MD simulation technique is used to examine 

the stability of a chemical compound to its 

receptor site. The RMSD is considered an 

integral feature that implies the stability of the 

complex at the time of the simulation. For 

native protein, the overall RMSD was 

fluctuated between 0.4Å to 2.1Å. The RMSD 

value of the protein immediately reached to 

almost 2Å. After 3 ns the value gradually 

decreased and maintain a constant level up to 

49 ns without any major fluctuation. RMSD 

reached to 2.1Å at the 50th ns of the 

simulation.  

In the case of CHEMBL3315249-protein 

complex, the RMSD (Figure 4) fluctuation was 

very little and it was approximately from 0.4Å 

to 2.0Å during the whole simulation period. 

After starting the simulation, RMSD for this 

complex started to increased and reached 

1.5Å after 4 ns and then started to decrease. 

This scenario continued for a very short period 

of time and finished after 10 ns. After 10 ns to 

50 ns, this complex maintained a constant 

RMSD value with a very little fluctuation. On 

the other hand, the overall fluctuation for 

CHEMBL3315269-protein complex was 

between 0.4 Å to 1.8 Å. Immediately after 

starting the simulation, this complex 

maintained a constant level till 30 ns and 

during this time the RMSD value was below 

1.6 Å. After 30ns, RMSD reached over 1.6Å 

which continued up to 40 ns. During this time, 

the fluctuation was too little. After 40th ns, 

RMSD reached to maximum value 1.8A and 

then decreased to 1.4Å and maintained the 

same level till the end of the simulation. For 
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complex CHEMBL3315248-protein, the overall 

value of RMSD was between 0.5Å to 2Å. At 

the beginning of the simulation, RMSD 

reached approximately 2Å then decreased 

immediately to 1.5Å and maintained this value 

till 40 ns with little bit variation. After 40th ns, 

RMSD started to increase gradually and 

reached to 2Å at 47th ns and then maintained 

this value till the end. Although there was a 

neglectable variation of the value during this 

period of simulation. 

Radius of gyration (Rg) expresses the 

compactness of complex during the 

simulation. Rg of the native protein increased 

after the simulation began and stabilized after 

9 ns. From 10th ns, it maintained a constant 

value till the end of the simulation with little 

bit fluctuation. For the CHEMBL3315249-

protein complex, the Rg value range was from 

21.2Å to 22.2Å (Figure 5). From the beginning 

of the simulation Rg value increased till 10 ns 

and then decreased. From 10th to 30th ns, Rg 

value was relatively stable. After 30 ns, Rg 

increased and reached to maximum value 

22.2Å which persisted from 30 to 35 ns. After 

35 ns, the value gradually decreased and 

maintained a stable state till the end of the 

simulation with negligible variation. 

CHEMBL3315269-protein had maximum Rg 

value of 21.9Å which was obtained 

approximately at the 5th ns. After 5 ns, the 

value gradually decreased and maintained a 

stable state during the whole simulation. 

Although approximately at the 37th ns, Rg was 

over 21.8Å but except this time, the value was 

below 21.8Å during the period. For 

CHEMBL3315248-protein, Rg began to 

increase from the beginning of the simulation 

and reached to 22A after 20 ns. Then the value 

decreased and maintained the level till 40th ns. 

At the 50th ns, Rg again reached to 22Å. 

For RMSF value (Figure 6), CHEMBL3315249-

protein complex and CHEMBL3315269-protein 

complex showed similarity with the native 

protein. There was no unusual fluctuation of 

the residues of protein-ligand complexes 

comparing to the non-liganded protein. 

Although CHEMBL3315248-protein complex 

showed a little bit higher fluctuation of the 

residues comparing the other two complexes.  

After discussing the MD simulation result, it 

was seen that all the complex maintained a 

good stability during the whole simulation. 

RMSD value of the complexes indicates that 

all the ligands had good structural stability 

and strong intramolecular interaction with the 

residues during the whole simulation period. 

Rg value also indicates that they maintained a 

good structural compactness with the protein. 

On the other hand, CHEMBL3315249-protein 

complex and CHEMBL3315269-protein 

complex performed better than the 

CHEMBL3315248-protein complex in case of 

RMSF. From this MD simulation, it is clear that 

all the three molecules performed better in 

case of stability. Due to this, we took all these 

molecules as our final hit.  

Conclusion 

PDE4 is a novel target for the development of 

CNS acting drugs. In this research, 

pharmacophore-based virtual screening was 

carried out to get novel compounds. After 

multiple filtration three molecules were 

obtained. The purpose of this filtration was to 

remove the molecules that may be toxic. 

Finally, their stability was checked by 

molecular dynamic simulation study where all 

of them showed better stability with the 

protein. This is expected that this in-silico 

study will be helpful for the development of 

new molecules for Alzheimer’s disease. 
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Molecules ID 
PyRx 

(kcal/mol) 
Vega zz 

(kcal/mol 

AutoDock 
vina 

(kcal/mol) 

CHEMBL1417438 -9.1 -8.8 -9.2 

CHEMBL3315249 -8.9 -8.8 -9.2 

CHEMBL1558592 -9.9 -9.5 -9.8 

CHEMBL1782297 -9.7 -9.6 9.4 

CHEMBL1782286 -9.1 -8.9 -9.5 

CHEMBL1782296 -9.2 -9.1 -9.3 

CHEMBL3315269 -9.6 -9.2 -9.5 

CHEMBL1784111 -8.9 -8.6 -9.1 

CHEMBL1784109 -9.0 -8.8 -9.3 

CHEMBL3315248 -8.6 -8.8 -9.1 

CHEMBL1304937 -8.9 -8.7 -9.2 

CHEMBL1495549 -8.5 -8.8 -9.0 

CHEMBL1366677 -8.5 -8.7 -9.2 

CHEMBL3315263 -8.9 -9.0 -9.1 

CHEMBL1434873 -9.1 -8.9 -9.3 

CHEMBL3315247 -8.7 -8.8 -9.0 

CHEMBL1358651 -8.6 -8.9 -9.2 

CHEMBL1406744 -9.0 -8.9 -9.3 

CHEMBL1454872 -8.9 -9.0 -9.3 

CHEMBL3114935 -8.8 -8.9 -9.4 

CHEMBL1597216 -8.7 -8.8 -9.0 

Rolipram -8.4 -8.6 -8.9 
 

Table 1: Molecular docking score of the selected molecules and rolipram 
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Molecules ID DSX scoring 

CHEMBL3315248 -20 

CHEMBL3315247 -21 

CHEMBL3315269 -18 

CHEMBL1597216 -19 

CHEMBL3315249 -22 

CHEMBL1558592 -18 

CHEMBL1782297 -19 

CHEMBL1782286 -21 

CHEMBL1782296 -18 

Rolipram -17 

 

Table 2: DSX scoring of the molecules and rolipram 
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Molecules Hydrogen bonding Hydrophobic 
interaction 

Van der Waals 

CHEMBL3315249 ASN B:283, GLU B:304, 
GLN B:443 
 

Pi-pi Stacked: PHE 
B:446, TYR B:233, PHE 
B:414 
Pi-pi T-shaped: TYR 
B:233, PHE B:446 
Alkyl: MET B:347, ILE 
B:410, MET B:431 
Pi-alkyl: ILE B:410, 
MET B:431 

HIS B:278, SER B:282, 
LEU B:303, GLN B:284, 
HIS B:234, ILE B:450, 
SER B:442. TRP B:406, 
TYR B:403, THR B:407, 
ASN B:395 

CHEMBL3315269 TYR B:233, HIS B:278 Unfavorable acceptor-
acceptor: ASP B:275 
Pi-pi Stacked: MET 
B:431, PHE B:446 
Pi-Sulfur: MET B:431 
Pi-Cation: ASP B:392, 
HIS B:234 
Pi-Anion: ASP B:393 
Alkyl: ILE B:410, TYR 
B:403 
Pi-alkyl: ILE B:410, PHE 
B:446 
 

PRO B:396, THR B:407, 
ASN B:395, TRP B:406, 
GLN B:443, SER B:442, 
PHE B:414, MET B:347, 
THR B:345, GLU B:304, 
HIS B:307, HIS B:238, 
LEU B:393 

CHEMBL3315248 HIS B:278, ASN B:395 Pi-pi Stacked: PHE 
B:446, PHE B:414 
Alkyl: ILE B:410, LEU 
B:303 
Pi-alkyl: CYS B:432 
Pi-Cation: HIS B:234 

VAL B:281, GLN B:417, 
SER B:282, PRO B:396, 
THR B:407, TRP B:406, 
GLN B:443, TYR B:233, 
LEU B:393, MET B:347, 
THR B:345, ASP B:275, 
GLU B:304, HIS B:307, 
HLU B:413 

Rolipram HIS B:234, GLN B:443 Pi-pi Stacked: TYR 
B:233, PHE B:446 
Pi-pi T-shaped: TYR 
B:233, PHE B:446 
Alkyl: MET B:431, PHE 
B:414 
Pi-alkyl: ILE B:410, PHE 
B:446 

HIS B:238, ASN B:395, 
TRP B:406, TYR B:403, 
THR B:407, MET B:411, 
SER B:442, LEU B:393, 
MET B:347, ASP B:392 

 

Table 3: Interaction of the selected ligands and rolipram with the residues of the protein
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Figure 1: Pharmacophore model of 1RO6 

 

Figure 2: 2D structure of the attached ligand with 1RO6
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Figure 3: ROC curve obtained during the screening of the database 
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Figure 4: RMSD value of the ligand-protein complex and the protein 

 

Figure 5: Rg value of the ligand-protein complexes and the protein 

 

Figure 6: RMSF value of the ligand-protein complexes and protein 
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