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Abstract  

The investigation was performed on 55 male Wistar rats. The pain behaviors were induced through 
the formalin (2.5%) subcutaneous administration into the plantar surface of the right hind paw. Pain 
score value was determined continuously during 90 min.   

It was established that combined usage of pioglitazone (100.0 mg/kg, i.p.) and cerebellar 
transcranial direct current stimulation (tDCS) (300 µA, 10.0 min) resulted in pronounced protection of 
pain behaviors at all stages of the pain syndrome development. The severity of investigated index 
decreased by 60.0% compared to the control data at 4-6 min after formalin administration (P<0.05). 
Averaged severity of pain behaviors was suppressed more than twice at Phase I and Interphase 
(P<0.05), by 60.0% at Phase 2A (P<0.05), and by 33.3% at Phase 2B (P<0.05). Pain -suppressive effect 
encompassed 42.0+8.25 min of Phase 2A and exceeded data in the group treated with tDCS by 39.1% 
(P<0.05) and in the group treated with pioglitazone by 64.3% (P<0.05). 

The conclusion was made that the pain-protective effect of pioglitazone is strengthened with 
cerebellar tDCS. 
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Introduction  

Pathogenesis of pain development included 
fundamental routes of brain functioning. Namely, 
bioelectrogenesis, neuromediators elaboration, and 
synthesis of macromolecules are contributive. A similar 
broad functional spectrum might be addressed to 
peroxisome proliferator-activated receptors (PPAR) 
activity [1, 2]. PPARγ recently attracted researchers' 
attention as those involved in pain syndrome 
precipitation [3-7].  

It was shown that PPARγ agonists could block the 
production of proinflammatory cytokines, TNFα, IL-6, and 
IL-1β in different animal tissues as well as in patients [2, 8, 
9]. Effects of PPAR agonists have been explored in animal 
models of inflammation, traumatic brain injury, stroke, 
epilepsy, and pain syndrome. Gained results revealed 
positive therapeutic effects and usage of PPAR agonists 
such as thiazolidinediones, clinically used as an 
antidiabetic is regarded as promising for brain disease 
treatment, including neuropathic pain [2, 10, 11]. 

Earlier, we established the role of PPARγ as significant 
for the antiseizure effects precipitation induced by 
cerebellar transcranial direct current stimulation (tDCS) 
[12]. Namely, blocking of PPARγ with bisphenol A 
diglycidyl ether (2,2'-[(1-methylethylidene) bis(4,1-
phenyleneoxymethylene)] bis-oxirane, (BADGE, 100 
mg/kg, i.p.) alleviate the ctDCS-caused prevention of 
generalized clonic-tonic fits induced with 
pentylenetetrazol in kindled rats. Neuroprotective effects 
of fastigial nucleus stimulation realized via PPARγ [13]. 
PPAR-γ might be activated via cAMP/PKA/PPAR γ axis [14, 
15] with fastigial electrical stimulation [16]. Besides, 
nervus vagus anti-inflammatory action is also transduced 
via PPAR γ [17].  

Considering that pain relief is caused by cerebellar 
stimulation [18-21], the ability of PPARγ agonists to 
relieve neuropathic pain [4, 22], present work aimed to 
investigate the pain syndrome manifestations in rats 
under conditions of cerebellar tDCS and modulation 
PPARγ with antagonist BADGE and agonist pioglitazone. 

Methods 

Experimental animals 

Experiments were performed on 55 male Wistar rats 
with an initial body weight of 180-270 g. Animals were 
kept in standard conditions (constant temperature 23o C, 
relative humidity 60%, 12 h dark/light cycles, standard diet, 
and tap water were given ad libitum) and were 
acclimatized to laboratory conditions at least seven days 
before the experiment. All experiments were carried out 

following the National Institute of Health Guidelines for 
the care and use of laboratory animals and the European 
Council Directive on 24 November 1986 for Care and Use 
of Laboratory Animals (86/609/EEC). Before the study, 
the experiments were approved by Odesa National 
Medical University Bioethics Committee (UBC) (approval 
No. 5 dated 5/04/2019). 

Formalin test 

Rats were put in a plastic transparent observation 
chamber (height 50 cm Width 45 and Length 50 cm) for 
their habituation for 60 min. After that, 50µL of 2.5% 
formalin was injected subcutaneously into the plantar 
surface of the right hind paw with a 30 gauge needle. 
Video recording (smartphones) of pain behaviors started 
immediately after injection and continued for 90 min. 

Pain behaviors were scored as follows: 0, the injected 
paw was not favored; 1, the injected paw had little or no 
weight placed on; 2, the injected paw was elevated and 
not in contact with any surface; and 3, the injected paw 
was licked or bite. Scores were continuously observed for 
the experiment duration (90 minutes). Off-line analysis of 
data was performed by the modified method [23]. 
Namely, a score of pain behaviors calculated for 3-
minutes intervals and three phases of pain behaviors 
were identified [24, 25]. 

Cerebellar tDCS 

Cerebellar stimulations were performed in accordance 
with the earlier described method [12]. In short, the 
cathode (diameter 3.5 mm) was fixed with an adhesive 
tape on the skull midline caudally with respect to the 
lambda; this provided the orientation of stimulation to 
the cerebellum. A conductive gel was preliminarily 
applied below the electrode on the depilated skin. The 
anode (40×45 mm) was placed on the rat’s abdominal 
surface. The current intensity was 300 μA. Stimulation 
was performed for 10 min and the modified generator, 
ETRANS (FSU), served as the source [12]. Formalin test 
was performed 10 min after termination of tDCS. 

Groups of animals 

Nine rats treated with DMSO i.p. and pseudo–
stimulated were used as a control. Experimental groups 
of rats included rats with tDCS, treated with BADGE 
(100.0 mg/kg, i.p.), treated with tDCS and BADGE (100.0 
mg/kg, i.p.), treated with pioglitazone (100.0 mg/kg, i.p.) 
and combined usage of tDCS and pioglitazone (100.0 
mg/kg, i.p.) (total – 46 rats).
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Investigated compounds administration 

Pioglitazone (Lilly S.A., Spain) was administered in 0.3-
0.5 DMSO solution in a dose of 100.0 mg/kg, i.p. in 60.0 
min before formalin test. The antagonist of PPARγ, 
BADGE (Santa Cruz Biotechnology, USA), was i.p. injected 
in the dose of 100 mg/kg 45 min before tDCS. 

Statistics 

Scores of pain behaviors were analyzed using 
repeated-measures ANOVA. The comparisons between 
experimental and control groups at each 3 minutes 
interval were estimated using Tukey's posthoc test. Also, 
the averaged data for each phase of pain behaviors were 
compared using one-way ANOVA and Newman-Keuls 
test. The Shapiro-Wilk test for normality was 
used. P values <0.05 were considered significant. Data are 
presented as Mean ±SD. 

Results 

Subcutaneous formalin administration (2.5%) induced 
nociceptive behaviors in acute (phase 1- from the first to 
the 7th min) and chronic, lasting during all periods of 
observation (90 min). The nociceptive behaviors were 
alleviated during interphase (8-14 min). During this 
period, such manifestations as biting or licking the 
injected paw substantially attenuated or disappeared. 
The second phase began approximately 15 min after the 
formalin injection and lasted until 90 min (Fig.1). 

After tDCS, the tendency to decreasing of the pain 
behaviors was noted at the very beginning of observation 
with the significant diminution during a short period (6-9 
min) by 31.5% (P<0.05) (Fig.1, A). Also, long (25-51 min) 
significant reduction of nociceptive behaviors – by 26.7%-
37.7% registered during Phase 2A.  

Averaged values of the severity of pain behaviors were 
significantly reduced during Phase 2A – by 17.2% when 
compared with the control data (P<0.05) (Fig.1, B). 

The nociceptive behaviors after BADGE (100.0 mg/kg, 
i.p.) administration were characterized by the reduction 
of its severity during 7-12 min after formalin 
administration by 31.4-35.0% in comparison with the 
control data (P<0.05) (Fig.2, A). Also, the reduction by 
26.7% (P<0.05) was registered at a 24-27th period while at 
75-81t  min the significant increase of pain behaviors was 
seen – by 33.3-42.3% when compared to control data 
(P<0.05) (Fig. 2, A). The averaged values of the severity of 
the nociceptive behaviors did not differ from control 
values (P>0.05) (Fig.2, B). 

Two short-time significant reductions of pain behaviors 
severity were seen under conditions of combined usage 

of tDCS and BADGE (100.0 mg/kg, i.p.). It was diminished 
by 25.7% at 6-9 min and by 25.3% at 21-24 min from the 
moment of formalin administration (P<0.05) (Fig.3, A). 
The averaged values of the severity of pain behaviors 
were free from significant differences compared to the 
control data (Fig.3, B).   

Pioglitazone administration caused a substantial 
reduction (by 26.8-50.0%) of the pain behaviors severity 
at the period starting from the first 3 min till 12th min from 
the moment of formalin administration (Fig.4, A). During 
15-18th min, the reduction was also significant (44.0%) and 
starting from 21t min stable period of severity reduction 
(28.0- 41.3%) lasted till 36th min of observation. Significant 
reduction of pain behaviors severity was registered 
during 63d - 75th min (by 36.4-57.9%) (P<0.05) (Fig.4, A). 
Averaged values of the investigated index revealed a 
significant decrease in pain behaviors severity at Phase I 
by 20.0% (P<0.05) (Fig.4, B). Also, the reduction was 22.9% 
at Phase 2A (P<0.05) and 44.4% at Phase 2B (P<0.05). 

Combined usage of tDCS and pioglitazone (100.0 
mg/kg, i.p.) resulted in pronounced protection of pain 
behaviors at all stages of the formalin-induced pain 
syndrome development (Fig.5, A). The severity of 
investigated index decreased by 60.0% when compared 
to the control data at 4-6 min after formalin 
administration (P<0.05) (Fig.5, A). Pain-suppressive effect 
encompassed almost the whole Phase2A (up to 55-57th 
min). The maximal reduction was at 34-36th min – by 
75.0% and 25-27th min – by 71.1% (P<0.05). Averaged 
severity of pain behaviors was suppressed more than 
twice at Phase I and Interphase (P<0.05), by 60.0% at 
Phase 2A (P<0.05), and by 33.3% at Phase 2B (P<0.05) 
(Fig.5, B). 

The most durable protection of pain behavior caused 
with both tDCS and pioglitazone was observed during 
Phase2A. The duration of such effect in rats with a 
combined usage of tDCS and pioglitazone was 42.0+8.25 
min and exceeded data in the group treated with tDCS by 
39.1% (P<0.05) and in the group treated with pioglitazone 
by 64.3% (P<0.05) (Fig.6). 

Discussion 

Hence, gained data showed that tDCS of the cerebellar 
surface caused suppression of formalin pain behaviors 
starting from Phase1, which is most pronounced at Phase 
2A. Pain protective effects of cerebellar tDCS are 
alleviated with BADGE administration, which supports 
PPAR-gamma involvement. Besides, pioglitazone caused 
well-verified pain–protective action at first and second 
phases, and these effects increased under conditions of 
combined usage of cerebellar tDCS and pioglitazone.
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Cerebellar stimulation causes two types of responses: 
precipitates immediately with the stimulation (short-term 
precipitation) and delayed ones  [26]. In our experimental 
conditions, it is expected that the outer cerebellar 
surface, more precisely – Purkinje cells located at lobules 
V-VII are most affected with electrodes applied to the 
posterior skull zone. Optogenetic data revealed that the 
increased activity of Purkinje cells induces "phasic" or 
"online" effects [27-30]. Depolarization of Golgi inhibitory 
neurons is responsible for long-lasting changes [26]. 
Hence, cathodal depolarization of Golgi cells and 
inhibition of Purkinje cells need a time for the consequent 
renovation and "overshoot" of initial cellular activity with 
postponed precipitation of pain suppression. Purkinje 
cells represent the sole output from the cerebellar cortex 
and inhibit the dentate nucleus, ultimately dampening 
cortex excitability, including pain-sensitive neurons. Such 
neurophysiological assumptions explain the more 
pronounced effects revealed at Phase2 of pain formalin 
syndrome. Besides, proinflammatory cytokines' role in 
Phase2 development [1-3, 11, 23-25] is also targeted with 
pioglitazone and tDCS. 

It is important to note that centrally acting drugs 
effectively suppress both phases of pain behaviors in the 
formalin test [31, 32]. Those compounds, which cause 
peripheral effects such as nonsteroidal anti-inflammatory 
drugs - acetylsalicylic acid, ameliorate only the second 
phase [31, 32]. Our results clearly show that tDCS and 
pioglitazone effectively prevented pain behaviors in both 
phases. Mansouri M.T. et al. [11] delivered a similar result 
on pioglitazone effects. Hence, the role of centrally 
located PPARγ is assumed as a target point for their pain-
protective synergy effects.  

Meanwhile, the involvement of central PPARγ as an 
entire route for antinociceptive action of cerebellar tDCS 
is hardly suspect. Thus, considering the role of 
neurotransmission via dorsal horn gate as a main for the 
pain precipitation at the first phase [33], it is worth 
assuming that descending influences from irritated 
cerebellar structures contribute a lot to pain suppression. 
Besides, central effects are of significance as far as the 
cerebellum modulates the activity of limbic structures 
[28, 30, 34, 35].  Both central and peripheral effects of 
cerebellum realized via endogenous opioid system 
involvement [35, 36, 37], inhibition of proinflammatory 
cytokines (TNF-α, IL-1β) elaboration [38], reduction of 
oxidative stress [39]. GABA and glutamate level, which is 
considered as a target for peripheral analgetics action 
[11], is also modulated [40].  

Besides, the synergy between rapamycin and 
pioglitazone [41, 42] and antinociceptive effects of 

rapamycin [43] point to the possible involvement of 
mTOR-dependent mechanisms in the realization of 
observed effects combined usage tDCS and pioglitazone 
against formalin pain behaviors. 

The second phase of the formalin test has resulted 
from a peripheral inflammatory process. Hence, the 
established effect of tDCS and pioglitazone synergy 
should translate to other forms of brain pathology with 
pro-inflammatory pathogenesis. 

Conclusions 

1. Pioglitazone (100.0 mg/kg, i.p.) alleviates both the 
first and second (2A) phases of formalin pain behaviors.  

2. Cathodal cerebellar tDCS is effective against the 
second phase of formalin-induced pain in rats, and the 
effects of tDCS are blocked with BADGE administration. 

3.Pain-protetcive pioglitazone action stregthened by 
cerebellar tDCS. 
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Figure   1

Time – course of pain behavior induced with 2.5% formalin intraplantar administration to control sham-stimulated 
rats and rats with cerebellar tDCS. 
A: abscissa – time (minutes) from the moment of formalin injection. Ordinate – the severity of pain behaviors 
(scored in balls); 
B: averaged severity of pain behaviors corresponding with pain syndrome development phases: Phase I – 1-7 min, 
Interphase – 8-14 min, Phase 2A- 15-60 min, and Phase 2B- 61-90 min after formalin administration.  
Data are presented as M+SD; #-P<0.05 compared to the control data. 
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Figure 2 

 

 

Effect of BADGE (100.0 mg/kg, i.p.) administration on time–course of pain behavior induced with 2.5% formalin 
intraplantar administration. 
N o t e s : the same as in Fig.1. 
Data are presented as M+SD; #-P<0.05 in comparison with the control data. 
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Figure 3 

 

 

 

Effect of tDCS performed after BADGE (100.0 mg/kg, i.p.) administration on the time – course of pain behavior 
induced with 2% formalin intraplantar administration. 
N o t e s : the same as on Fig.1. 
Data are presented as M+SD; #-P<0.05 in comparison with the control data.
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Figure 4 

 

Effect of pioglitazone (PGZ) (100.0 mg/kg, i.p.) administration on time–course of pain behavior induced with 2.5% 
formalin intraplantar administration. 
N o t e s : the same as in Fig.1. 
Data are presented as M+SD; #-P<0.05 in comparison with the control data. 
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Figure 5 

 

Effect of combined usage of tDCS and pioglitazone (PGZ) (100.0 mg/kg, i.p.) on time–course of pain behavior 
induced with 2.5% formalin intraplantar administration. 
N o t e s : the same as in Fig.1. 
Data are presented as M+SD; #-P<0.05 in comparison with the control data. 
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Figure 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 
 
 
 

 
 
 
 
Influence of pioglitazone (PGZ) and tDCS on the life span of pain behaviors (Phase 2A). 
N o t e s: abscissa – observation groups; ordinate – minutes. Data are presented as M+SD; *-P<0.05 vs. group with 
tDCS; #-P<0.05 vs. group treated with PGZ. 
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