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The cardiovascular complications of diabetes were previously considered to be caused by 

structural changes with very slow progression. Historically, with the available methodology, 

abnormal deposition of extracellular material was studied more extensively than were changes in 

cellular function. It is now recognized that, on the functional level, cardiovascular dysfunction 

during deregulated metabolism occurs soon after the onset of metabolic abnormalities, long 

before the appearance of histopathological changes, and that such dysfunction is regulated by 

dynamic and complex mechanisms on the cellular and molecular levels. This gives hope that 

intervention with preventive therapies is possible at a stage before atherosclerosis and heart 

failure are manifest. Both type 1 and type 2 diabetes are precipitated by failing function of the 

pancreatic beta cell. In addition, they are characterized by peripheral insulin resistance, which 

may be both a cause and effect of the disordered metabolic state.  As the prominent general 

features of diabetes, hyperglycaemia and insulin resistance are probable causes of diabetic 

cardiovascular complications. Below, the mechanisms at the cellular and molecular levels that 

potentially explain the pathogenesis of atherosclerosis and cardiac dysfunction are outlined. 

Based on this understanding, potential new treatment strategies are then discussed. 

IINNSSUULLIINN  SSEENNSSIITTIIVVEE  AANNDD  IINNSSUULLIINN  RREESSIISSTTAANNTT  CCAARRDDIIOOVVAASSCCUULLAARR  

MMEECCHHAANNIISSMMSS  

 Because resistance to insulin-stimulated glucose uptake and metabolism in non-vascular 

tissues is central to the pathogenesis of type 2 diabetes (and is a common feature in type 1 

diabetes), resistance to insulin stimulated effects in the cardiovascular system is an obvious 

candidate for a general mechanism to explain the development of diabetic complications in the 

heart and blood vessels. Below, various insulin sensitive mechanisms are outlined that, when 

altered in insulin resistance and diabetes, may have relevance to atherogenesis and the 

occurrence of cardiac dysfunction. 

MMeeddiiaattoorrss  ooff  vvaassoommoottiioonn::  nniittrriicc  ooxxiiddee  aanndd  eennddootthheelliinn--11  

One of the currently best known vascular actions of insulin is to increase the production 

of endothelium-derived nitric oxide (NO). Apart from its role in mediating vasodilatation, NO 

inhibits monocyte adhesion, proliferation of vascular smooth muscle cells, and platelet adhesion 

and activation in the intrinsic coagulation pathway (1). Because all of these effects are 

potentially important for the development of atherosclerosis, a decrease in NO production in 
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insulin resistance and diabetes is believed to be of central importance to the development of 

diabetic vascular complications. This may occur either because of NO breakdown by reactive 

oxygen species produced in the vessel wall, or be due to decreased activity caused by glucose 

induced post-translational modification of endothelial nitric oxide synthase (NOS) (2). 

Decreased NO availability may occur despite compensatory increased expression of endothelial 

NOS (3, 4). Insulin-stimulated vasodilatation is dependent on endothelium-derived NO (5–8). 

Both endothelial NOS expression and activity are mediated through the insulin signalling 

pathway that involves activation of phosphatidylinositol 3-kinase (PI3K). Thus, in endothelial 

cells, insulin stimulates insulin receptor autophosphorylation (9,10), tyrosine phosphorylation of 

insulin receptor substrate-1 (9–11) and -2 (9), insulin receptor substrate associated PI3K 

activity(9,10), phosphoinositide dependent kinase-1 activity (11), and subsequent serine 

phosphorylation(9,10) and activation (12,13) of Akt, causing serine phosphorylation (10,13) and 

activation(10,12–15) of endothelial NOS. The PI3K pathway also mediates insulin stimulated 

endothelial NOS gene expression (15).  

In obesity-associated insulin resistance, insulin stimulation of the PI3K pathway is 

blunted (9, 15). When signalling through the PI3K pathway is decreased, the supposedly 

beneficial effect of other hormones and growth factors on endothelial NOS function (including 

oestrogen and vascular endothelial growth factor [VEGF], which are also activators of this 

pathway) may potentially also be compromised. Local regulation of vasodilator tone is regulated 

as the result of the balance between vasodilator and vasoconstrictor signalling molecules. 

Endothelin-1 is the most potent vasoconstrictor known and its importance in coronary artery   

disease is increasingly being recognized, for example by the demonstration that the majority of 

basal vascular tone in atherosclerotic arteries is mediated by endothelin-1, which accounts 

completely for the vascular tone at stenoses (16). 

 Endothelin-1, like NO, is primarily synthesized in the endothelium, and mediates its 

vasoconstrictor effects after binding to G-coupled receptors on vascular smooth muscle cells 

(17). It also has mitogenic effects in vascular smooth muscle cells (18). Plasma levels are 

increased in diabetes (17), perhaps because high glucose concentrations induce endothelin-1 

expression through activation of protein kinase C (PKC) (19). Insulin stimulation of NO 

mediated vasodilatation may be counteracted by insulin stimulated endothelin-1 production 

(20,21). In vascular cells, insulin induces endothelin-1 expression (22), but conversely 
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endothelin-1 inhibits insulin signaling (23). Thus, endothelin-1 decreases insulin-stimulated 

glucose uptake (24). Little is known about how insulin and endothelin-1 signalling interact in 

vivo in normal physiology and in insulin resistant states.   

  In the myocardium, NO may modulate heart rate andcontractility (25), and regulates 

glucose uptake (26) and mitochondrial respiration (27). The inhibitory effect of cardiac NO on 

oxygen consumption is depressed in diabetes (28). Endothelin-1 potently increases cardiac 

contractility (29) and, although myocardial endothelin-1 expression and endothelin-1 receptor 

affinity is increased in diabetes, the inotropic effect of endothelin-1 appears to be blunted (30). 

Much more work is needed if we are to understand how these signalling molecules affect cardiac 

function in diabetes. 

VVaassccuullaarr  eennddootthheelliiaall  ggrroowwtthh  ffaaccttoorr::  aa  mmeeddiiaattoorr  ooff  aannggiiooggeenneessiiss  

VEGF regulates vascular permeability and angiogenesis, but may also inhibit vascular 

smooth muscle cell proliferation and thrombosis (31). In diabetes and insulin resistance, cardiac 

VEGF expression is decreased (32). The relevance of these data for cardiac angiogenesis has 

recently been emphasized by clinical trial data showing that endocardial injection of VEGF 

complementary DNA can improve clinical outcomes in patients with ischaemic heart 

disease(33). It is important to note that in diabetes and insulin resistance the opposite finding, 

that of increased VEGF expression, is observed in the retina and in renal glomeruli (32); this is in 

accord with increased retinal and glomerular angiogenesis as elements of diabetic microvascular 

complications. Insulin stimulates VEGF expression in myocardium (32), but in diabetes and 

insulin resistance this effect is blunted (34). 

PPrroolliiffeerraattiioonn  aanndd  aappooppttoossiiss  

In tissues in which glucose uptake depends on insulin stimulation, insulin signalling 

transduction follows the PI3K pathway described above. Mediation of the mitogenic effects of 

insulin, however, is facilitated by a pathway involving mitogen-activated protein kinase 

(MAPK). In insulin resistance, the MAPK pathway is unaffected in vascular (9) and non-

vascular (35) tissues, thus promoting mitogenic effects of insulin during the hyperinsulinaemia 

that is characteristic of insulin resistance. Insulin has an antiapoptotic effect in endothelial cell 

culture(36). A similar effect in cardiomyocytes has been described after ischaemia/reperfusion. 

In both cell types, the antiapoptotic effect involves signalling through Akt (36, 37). In patients 

with type 2 diabetes and in healthy people after 2 hours of induction of hyperglycaemia, the 
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plasma concentration of soluble adhesion molecules are elevated (38). Insulin, on the other hand, 

decreases levels of intercellular adhesion molecule-1 in endothelial cells (39). Clinically, insulin 

treatment decreases levels of circulating soluble adhesion molecules (40) as soon as after 12 h 

(38). 

CCaarrddiiaacc  ssuubbssttrraattee  mmeettaabboolliissmm  

Cardiomyocyte phenotypes, including maturation of contractile protein isoforms, are 

dependent on insulin signalling, as evidenced by observations in mice with cardiomycyte-

selective insulin receptor knockout (41). Furthermore, lack of cardiomyocyte insulin signalling 

in this model results in a shift of substrate utilization, with decreases in fatty acid oxidation and 

increases in glucose oxidation (41). This is paradoxically the opposite change from that observed 

in diabetes, in which the myocardium primarily utilizes fatty acids rather than glucose as an 

energy substrate (42). Insulin stimulated cellular glucose uptake is partly mediated by 

translocation of glucose transport proteins from intracellular pools to the cell membrane. During 

myocardial ischaemia, insulinstimulated translocation of glucose transporter-1 and -4 in 

cardiomyocytes is particularly increased in ischaemic regions of the myocardium (43). From the 

discussion above, it is apparent that many mechanisms believed to play a role in diabetic 

cardiovascular complications are insulin sensitive, and that several have been shown be deficient 

during insulin stimulation. Therefore, improving insulin sensitivity of cardiovascular 

mechanisms is an obvious target for preventing diabetic complications.  

HHEEAARRTT  FFAAIILLUURREE  IINN  DDIIAABBEETTEESS  MMEELLLLIITTUUSS  

Diabetic cardiomyopathy has been recognized for many decades. Early studies in 

experimental animals treated with streptozotocin or alloxan to induce insulin insufficiency 

demonstrated changes in calcium cycling and in myocardial contractility. We, and others, found 

that myocardial infarction of a given magnitude in patients with diabetes was associated with 

more severe congestive heart failure and that, despite the preserved systolic function, myocardial 

ultrasonic backscatter was altered in people with diabetes, which is indicative of structural 

alterations within the heart. It is now known that diabetes is a potent, independent risk factor for 

mortality in patients hospitalized with heart failure, and that the excess risk associated with 

diabetes is particularly prominent in women.  

Heart failure associated with diabetes can be manifested by diastolic dysfunction, systolic 

dysfunction or both, attributable to abnormal calcium cycling, impaired energetic and deposition 
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of AGEs. The AGEs can alter ventricular compliance by the cross-linking of collagen, through 

receptor-mediated release of proinflammatory cytokines by macrophages or through non-

receptormediated inactivation of nitric oxide and augmentation of oxidative stress. They have 

also been thought to increase renal sodium reabsorption, activate the sympathetic nervous 

system, alter peripheral arterial compliance, increase deposition of lipids within cardiomyocytes,  

induce small vessel coronary artery disease and incite oxidative damage to matrix proteins. As a 

consequence of impaired arterial compliance and endothelial function, myocardial oxygen 

demands are increased, predisposing to subendocardial ischemia that can exacerbate diastolic 

dysfunction. Left ventricular mass increases in proportion to the severity of impairment of 

glucose tolerance, particularly in women. An elevated concentration of fasting glucose is a risk 

factor for congestive heart failure with or without concomitant coronary artery disease. The 

presence of diabetes is a powerful predictor that heart failure and death will occur in long-term 

survivors of acute myocardial infarction. Patients with ST segment elevation acute myocardial 

infarction who are diabetic exhibit increased long-term mortality as a concequence of heart 

failure, whether or not they have been treated with revascularization procedures. Diabetes 

profoundly increases the development of heart failure following acute coronary syndromes. In 

patients that are hospitalized for heart failure with preserved systolic function, conditions such as 

hypertension, diabetes and obesity are common. Systolic hypertension (also known as wide pulse 

pressure hypertension) reflects increased central arterial stiffness. The strong association 

between diastolic heart failure and systolic hypertension appears to mirror deleterious cardiac 

responses to back reflected central arterial pressure waves with consequent increases in left 

ventricular chamber stiffness. Because coronary artery disease has such a prominent association 

with type 2 diabetes, it is somewhat surprising that factors other than coronary flow limitation, 

particularly congestive heart failure, are prominent determinants of risk for death and recurrent 

myocardial infarction in patients with unstable coronary artery disease. Thus, despite the use of 

bare metal and drug-eluting stents in diabetic patients undergoing revascularization procedures, 

mortality in the subsequent three years is  63% greater in those with diabetes than controls that 

are not diabetic (44). Even after adjustments for differences in baseline characteristics, the 

hazard ratio remains elevated at 1.462 (44). 
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