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Summary 
 

Cardiovascular diseases represent a major cuase of death in the western world. Both nitric 
oxide and peroxynitrite have been implicated in different cardiovascular processes. Nitric 
oxide is an endogenous vasodilator and mediator of several important physiological 
processes and it is involved in a number of protective mechanisms in cells. However, 
overproduction of nitric oxide can occur and this can lead to cytotoxicity. On the other 
hand, peroxynitrite is a potent biological oxidant formed from the near-diffusion limited 
reaction between superoxide anion and nitric oxide. It has been associated with mechanism 
of cell death such as necrosis and more recently with apoptois. In this review, were 
discussed some of the various roles of both, and their implicance in physiological and 
pathophysiological processes, which take place in cardiovascular system. 
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Introduction 

 
Nitric oxide (NO·) is an endogenous mediator of several important physiological processes 
and it is involved in a number of protective mechanisms in cells [1]. However, 
overproduction of NO· can occur and this can lead to cytotoxicity [2]. NO· is produced by a 
family of enzymes called nitric oxide synthases (NOS) through enzymatic oxidation of the 
guanidino group of L-arginine to form citruline and NO·. This occurs in two sequential 
monooxygenase reactions utilizing NADPH and tetrahydrobiopterin (BH4) as cosubstrates 
and involving the utilization of oxygen [3]. Whereas the physiological effects of NO· (e.g. 
vasorelaxation, neuronal signaling) are mostly mediated by the activation of the soluble 
isoform of guanylyl cyclase (GC) [4], the mechanism of pathophysiological effects is 
much more complex [5]. Initially, it was thought that all the biologic activity of NO· was 
readily attributable to its diffusion and reaction with a single target, enzyme GC (reviewed 
in [6]). Contemporary understanding of NO· biology lies in stark contrast to this concept. It 
is now know that NO· has a number of relevant biologic targets that are dictated, in part, by 
its site of synthesis, its relative concentration, and the availability of coreactants. At 
physiologicaly relevant low nanomolar concentrations, the predominant reactions of NO· 
are with heme and heme-copper centers [6].  
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Perhaps the best-characterized heme target for NO· is the soluble isoform of GC. This 
heme protein binds NO· with a biomolecular rate constant of ~ 108 M-1 s-1 [7], permiting its 
effective competition with other NO· targets and facilitating the well-characterized increase 
in cyclic guanosine 3´,5´-monophosphate (cGMP) in response to NO· [8]. Binding of NO· 
to the heme results in an initial six-coordinate NO-Fe2+ - histidine complex. Subsequent 
breakage of the histidine-to-iron bond leads to formation of five-coordinated nitrosyl-heme 
complex that initiates a conformational change resulting in activation of the enzyme 
(reviewed in [6]). The resulting increase in cGMP is largely responsible for vasodilatation 
and the inhibition of platelet aggregation and proliferation of smooth muscle cells [9,10]. 
Another important target for NO· at physiological concentration is the heme-copper protein 
cytochrome oxidase [11]. Binding of NO· inhibits the oxidase, and this associated with an 
improvement in the efficiency of energy metabolism in the mitochondria. As a 
consequence, endogenously produced NO· from the endothelium has considerable 
influence over tissue oxygen consumption [12]. 
On the other hand, peroxynitrite (ONOO-) is a potent biological oxidant formed from the 
near-diffusion limited reaction between superoxide anion (O2

·-) and NO· [13]. This radical-
radical combination reaction undergoes with a second order rate constant of 1010 M-1 s-1 
[14-16]. ONOO- exists in protonation equilibrium with peroxynitrous acid (ONOOH, pKa 
= 6.8) [17]. Thus, under biological conditions both ONOO- and ONOOH will be present, 
the ratio depending on local pH [18]. Since both precursor radical species, NO· and O2

·-, 
are transient in nature, the biological formation of ONOO- requires the simultaneous 
generation of both radicals which, in addition, must approach and react within the same 
compartment. However, while NO· has a biological half-life in the range of a seconds and 
readily diffuses across membrane, O2

·- lasts less than milliseconds and permeates 
membranes only via anion channels. Thus, due to both the greater half-life and facile 
diffusion of NO· compared to O2

·-, ONOO- formation will predominantly occur nearer to 
the O2

·- formation sites (reviewed in [19]). 
ONOO- promotes biological effects via different types of reactions, which could be 
classified in three main groups; 1: direct redox reactions, 2: reaction with carbon dioxide, 
and 3: homolytic cleavage of ONOO- (reviewed in [19]). Due to target molecule reactions, 
the biological half-life of ONOO- is estimated to be less than 100 ms [20,21]. This half-life 
is long enough for ONOO- to potentially travel some distances (5-20 µm) across extra- 
and/or intracellular compartments. However in addition to the estimated difussion in 
aqueous enviroments, the biological effects and detection of this oxidant agent will be 
influenced by its ability to permeate cell membranes, via anion channels (reviewed in 
[19]). 
The aim of the current review, therefore, is to discuss the roles of NO· and its secondary 
oxidant ONOO- in the pathophysiology of cardiovascular diseases, especially in 
myocardial ischemia-reperfusion (IR) injury, as a potential site for intervention to limit the 
damage.   
 
Biological actions of vascular nitric oxide  
In order to understand how decreased NO· impacts vascular disease, it is necessary to 
understand its many roles in vascular homeostasis. NO· has three major properties in the 
vascular system: anti-ischemia/antihypertension, antiatherosclerosis, and antithrombosis 
[22]. The anti-ischemia/antihypertension property of NO· follows from its actions to 
stimulate the production of vascular smooth muscle cGMP and from its action to promote 
angiogenesis [23].  
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Elevations in cGMP within vascular smooth muscle cell through the direct nitrosylation of 
soluble GC leads to processes, which prevent the entry and promote the extrusion of 
calcium thereby leading to vasodilation. This vasodilator activity has many important 
clinical consequences including maintenance and enhancement of coronary and peripheral 
blood flow as well as maintenance of blood presure and attenuation of hypertension in both 
systemic and pulmonary vascular beds [24,25]. Anti-ischemia is also achieved through 
NO·-dependent angiogenesis. NO· acts in concert with vascular endothelial growth factor 
(VEGF) to enhance endothelial cell proliferation as well as migration by stimulating 
podokinesis and by enhancing expression of urokinase-type plasminogen activator [26,27]. 
NO· also prevents apoptosis of newly formed vascular cells. Also, by virtue of being 
vasodilator, NO· decreases shear stress in the newly formed vessels which can potentially 
disrupt endothelial cell interaction with the surrounding extracellular matrix [28]. Other 
roles of NO· during IR injury will be analyzed latter in this paper. 
The anti-atherosclerosis property of NO· comes from its ability to reduce intracellular 
oxidative stress as well as inhibit key early atherogenesis-signaling processes. Inhibition of 
these signaling processes leads to down-regulation of oxidative enzymes, the reduction of 
leukocyte accumulation, and the inhibition of vascular smooth muscle cells proliferation 
and migration (reviewed in [22]). A reduction of intracellular oxidative stress by NO· 
reduces the presence of damaging reactive oxygen species (ROS) and is accomplished by 
several mechanisms [29]. NO· can scavenge directly O2

·-, although the product of this 
reaction, ONOO-, is itself a highly reactive specie. However, ONOO- may subsequently 
nitrosylate sulfhydryl groups to form S-nitrosothiols which can themselves participate in 
vasodilation, platelet antiaggregation, and monocyte adhesion inhibition (reviewed in 
[22]). NO· may also terminates the autocatalytic chain of lipid peroxidation that is initiated 
by oxidized low density lipoprotein (oxLDL) and/or intracellular ROS generation [30]. 
NO· may directly suppress ROS generation by nitrosylating oxidative enzimes to inactive 
forms. For example, nitrosylation of NADPH oxidase, prevents the association of its 
components rendering it inactive [31]. 
Finally, NO· can inhibit the gene expression. Modulation of various atherogenesis-
signaling processes by NO· occurs partly through the inactivation of especific 
transcriptional proteins such as nuclear factor κB (NFκB) [32]. This effect of NO· appears 
to be due in part to direct stabilization and/or increased expression of IκBa, which 
complexes to NFκB to inhibit its transcriptional activity [33]. Stabilization of the inactive 
NFκB/IκBa complex prevents the gene transcription of oxidative enzymes, as well as 
protein involved in leukocyte accumulation. Specifically, of glycoproteins adhesion 
molecules such as vascular cell adhesion molecule (VCAM) and chemokines such as 
monocyte chemotactic protein 1 (MCP-1). Expression of this proteins by endothelial cells, 
is inhibited within minutes and in a dose-dependent fashion upon exposure to NO· [34,35]. 
 
Alterations in endothelial oxidant-nitric oxide signaling   
The vascular endothelium appears to have multiple potential sources of ROS production, 
including mitochondrial respiratory chain, uncoupled NOS, NADPH oxidases, and 
xanthine oxidase (XO) [36,37]. The most dominant initial effect of increased ROS 
production by endothelium appears to be the attenuating action of O2

·- on NO· signaling 
[38]. Enhancement of this interaction seems to occur in multiple vascular diseases because 
of increased O2

·- production [39]. In the absence of adequate levels of NO·, the 
pathophysiological effects of ROS are likely to dominate the siganling and oxidative stress 
responses that are observed [38]. 
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The alterations in endothelial signaling caused by increased O2
·- production contribute to 

important processes, such as the promotion of vasoconstriction or vasospasm, attenuation 
of the inhibition of platelet aggregation, and promotion of neutrophil adhesion. The effects 
of a simultaneous elevation of NO· and O2

·- will probably be dominated by the actions of 
ONOO-, which will change as tissue antioxidant systems such as glutathione (GSH) 
become stressed and antioxidant enzymes become inactivated [38]. One of the first 
pathophysiological conditions observed to activate the production of increased levels of 
endothelium-derived ROS and ROS-mediated signaling responses was IR injury [40]. 
Also, ROS appear to have prominent roles in other chronically activated signaling 
processes associated with the evolution of key cardiovascular disease, including 
hypertension and atherosclerosis [41,42]. However, under more severe conditions, the 
responses observed are likely to be dominated by the pathological actions of oxidant 
agents, such as a loss of the protective effects NO· as a result of damage caused by the 
metabolites that are produced, and the activation of inflammatory responses and 
thrombosis [38]. 
 
Biological action of vascular peroxynitrite  
While generation of ONOO- may be beneficial in terms of host defense against invading 
microorganisms, excess ONOO- may be detrimental and entails damage to biomolecules. 
The mitogen-activated protein kinase (MAPK) pathways are among the signaling pathways 
that appear to be activated by a great variety of stressful stimuli, including oxidative stress 
[43]. ONOO- was demostrated to activate all three MAP kinase family members, p38 and 
c-Jun-N-terminal kinases (JNK) as well as the extracellular-signal-regulated kinases (ERK 
1/2), in a wide variety of cell types, including bovine endothelial cells [44] and human 
neutrophils [45,46]. 
Consequences of exposure of cells to ONOO-, in addition to the activation of these 
pathways, are the induced expression of stress genes such as c-fos, heme oxygenase-1, or 
the growth arrest and DNA damage-inducible (Gadd) proteins 34, 45, 153, and the 
induction of apoptosis. Apoptosis has been linked with MAPK activation since Xia et al. 
[47] proposed a crucial role of p38 and JNK as proapoptotic stimuli in PC12 cells, whereas 
activation of ERK seemed to be antiapoptotic (reviewed in [43]). 
Although, evidence indicates that ONOO- formation effectivelly limits NO· bioavailability 
by quenching NO·, other properties of ONOO- appear to limit endothelial function as well. 
This secondary oxidant readly oxidizes BH4, thereby limiting the activity of the endothelial 
isoform of NOS (eNOS) and facilitating O2

·- production [48]. Atherosclerosis is 
relacionated with reduced vascular levels of BH4 and its ONOO- -mediated oxidation has 
been proposed as a physiologically relevant mechanism of impaired NO· bioactivity [49]. 
Another pathway of eNOS uncoupling involves ONOO- -mediated oxidation of the Zn-
thiolate center, resulting in the conversion of active eNOS dimer to inactive eNOS 
monomers. Such uncoupling, mediated by ONOO-, involves the oxidation of one (or 
several) of the four cysteine residues coordinated to the Zn-atom present in the eNOS 
dimer [50]. Thus ONOO- have multiple biologic activities that could lead to impaired NO· 
bioactivity by its limiting production [48]. This contributes with redox homeostasis 
disruption in vasculature and can leads to pathophysiological conditions. 
 
Peroxynitrite-induced apoptosis 
Apoptosis cell death is the “default” death pathway characterized, among other parameters, 
by a compact morphology, maintenance of plasma membrane integrity, mitochondrial 
depolarization, secondary oxidant production, activation of caspases and oligonucleosomal 
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DNA fragmentation [51]. The first report indicating that ONOO- can trigger apoptotic 
death detected DNA fragmentation in ONOO- treated thymocytes [52]. Later, activation of 
caspase-3, a key player in the caspase cascade has also been detected in thymocytes [53].  
Prototypical apoptosis models utilize apoptosis inducers such as tumor necrosis alfa (TNF-
α) or FAS ligand acting upon cell surface death receptors. Channeling the death signal 
from this receptor to apoptotic effector machineries is well described. A characteristic 
sequence of events including opening of mitochondrial permeability transition pore, 
mitochondrial depolarization, secondary O2

·- production, release of apoptotic mediators 
from the intermembrane space to the cytoplasm, takes place in apoptosing cells [51]. The 
role of mitochondria in apoptosis induced by ONOO- is also supported by findings that bcl-
2, a mitochondrial antiapoptotic protein inhibits this cell death mechanism [54].  
Other reports indicate a possible role for free 3-nitrotyrosine, in apoptosis induced by 
ONOO-. They found that preincubation of rat thoracic aorta segments with 3-nitrotyrosine 
resulted in selective, concentration-dependent impairment of acetylcholine-induced 
vasorelaxation indicative of endothelial dysfunction. Moreover, nitrotyrosine triggered 
DNA damage in the endothelial cells. These data suggest that nitrotyrosine, released from 
proteins nitrated by ONOO-, may contributes to vascular endothelial dysfunction through 
promotion of DNA damage and/or apoptosis [55]. 
 
Peroxynitrite-induced necrosis 
Whilst low concentrations of ONOO- trigger apoptosis, higher concentrations of the 
oxidant compromise the apoptotic machinery forcing the cells to die by necrosis (reviewed 
in [5]). For a long time, necrosis was thought to be a passive process resulting from the 
inability of the cells to cope with high degree of oxidative stress. In 2002, a new paradigm 
has emerged identifying an active element in oxidative stress-induced necrosis. According 
to this concept, degree of the activation of poly(ADP-ribose)-polymerase (PARP) 
determines the fate of the oxidatively-injured cells [56]. PARP is activated by DNA strand 
break; activated PARP catalyzes the cleavage of NAD+ into nicotinamide and ADP-ribose 
and uses the latter to synthesize branched nucleic acid-like polymers poly (ADP-ribose) 
covalently attached to nuclear acceptor proteins. The branched polymer, the size of which 
varies from a few to 200 ADP-ribose units, may facilitate recruitment of DNA repair 
enzymes to the sites of DNA injury (reviewed in [5]). The polymer is degraded by poly 
(ADP-ribose) glycohydrolase (PARG) and ADP-ribosyl protein lyase with the latter 
enzyme removing the protein proximal ADP-ribose residue [56]. The concerted action of 
PARP and PARG maintains a highly accelerated ADP-ribose turnover in ONOO- treated 
cells. As a result, NAD becomes depleted in the cells leading to malfunctioning glycolysis, 
Krebs cycle, mitochondrial electron transport and eventually to ATP depletion [57]. 
Moreover, shortage on ATP is exaggerated by attempts of the cells to resynthezise NAD 
from ATP and nicotinamide. The net result of this pathway is a dramatic drop in cellular 
ATP. As the apoptotic machinery is known to depend on ATP, apoptosis is incapacitated 
and necrosis takes predominance [58]. 
In summary, it is important to note that apoptosis has been recently proven to represent a 
dominant form of cardiomyocyte death in IR, and myocardial apoptosis has been suggested 
as the initiating factor of postinfarction left-ventricular remodeling [59,60]. Although 
oxidants and free radicals are considered important triggers of myocardial apoptosis in 
such conditions, the exact apoptotic stimulus still remains elusive [60]. 
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Myocardial ischemia-reperfusion injury 
Coronary artery disease remains a major cause of death in the western world. The primary 
pathological manifestation of coronary artery disease is myocardial damage due to IR 
injury [61]. Heart tisuue is remarkably sensitive to oxygen deprivation [2]. The level of IR-
induced myocardial injury can range from a small insult resulting in limited myocardial 
damage to a large injury culminating in myocyte death. Importantly, major IR injury to the 
heart can result in permanent disability or death [62]. Like many cells, when deprived of 
oxygen (anoxia), cardiac cells can maintaining ATP levels by glycolytic ATP production, 
and can then revert smoothly to oxidative metabolism on reperfusion [63]. However, if 
blood flow is restricted, as in myocardial infarct, the cells accumulate glycolytic by-
products (lactate, H+) in addition to suffering from oxygen deprivation [64]. This is a 
condition known as ischemia and can damage cardiac cells irreversibly. Paradoxically, 
however, the major damage to ischemic cells comes on the reoxygenation (reperfusion). 
During reperfusion, the cells tipically undergo further contraction (hypercontracture) and 
membrane damage, and concluded in cell death [65,66]. Cardiac muscle is a highly aerobic 
tissue. As noted, under normal conditions, it obtains virtually all its energy from oxidative 
metabolism. Cosequently, restriction of the blood supply to cardiac muscle has serious 
pathological consequences, leading to cell death in the oxygen-depleted region (infarcted) 
[2]. During hypoxia or ischemia, the supply of oxygen to the respiratory chain fails. Non-
esterified fatty acid levels rise, although probably as a result of lipid breakdown rather than 
the concomitant cesation of fatty acid oxidation [67,68]. The tricarboxylic acid cycle is 
blocked, and no energy is available from oxidative phosphorylation. This leads to an 
accumulation of cytoplasmatic NADH, with the NADH/NAD+ ratio increasing severalfold. 
In anoxia, ATP levels can still be maintaining by glycolisis [63], but in ischemia this is 
accompained by accumulation of lactate and a decrease in cytoplasmatic pH (5.5-6.0 after 
30 min of ischemia) [69-71], and glycolysis is also inhibited [2]. 
Other researchers have emphasized the overproduction of ROS on reperfusion as a source 
of cell damage [72], and it is notable that approximatelly 50 % of free protein sulfhydrilic 
groups disappear, presumably owing to interference with the glutathione redox system 
[73]. Although cytosolic NADPH can be involved in maintaining GSH, the balance may 
shift towards the production of ROS by cytosolic NADPH-oxidase; blocking NADPH 
production by inhibiting glucosa-6-phosphate dehydrogenase, as well as inhibiting its re-
oxidation (by NADPH-oxidase or nitric oxide synthase) is, unexpectedly, protective 
against reperfusion injury [74].   
Despite the complexity in the mechanisms responsible for the IR-induced myocardial 
damage, essential factors leading to cellular injury have been delineated [62]. Evidence 
indicates that several interrelated factors, including a decrease in cellular ATP levels, 
accumulation of hydrogen ions, calcium overload, calpain activation, leukocyte activation, 
and production of ROS contribute to IR injury [75-80]. A substantial body of evidence 
implicates ROS in the cellular injury induced by IR in the heart (reviewed in [81]). The 
precise mechanism of cell injury by these oxidants is not fully known, but DNA, lipids, 
and proteins are likely targets. Based on studies in which exogenous oxidants are applied 
to cells, it is apparent that dose-dependent injury is observed, with lower levels of 
oxidative stress associated with lower levels of cell death [82,83]. 
 
Nitric oxide and myocardial IR injury 
NO· has been associated with protection against ischemic cell death in a large number of 
studies (reviewed in [81]), although the mechanism and site of action are not known. NO· 
is required for the cytoprotective effect induced by ischemic preconditioning in the heart 
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[84-86], but it is not clear whether NO· acts before the ischemia, during the ischemia, or 
during reperfusion [81]. The balance between protective and deleterious effects of NO· has 
led to difficulties in assessing its role(s) in IR. Its levels do rise during IR and, under these 
conditions, NO· can interfere with mitochondrial functions [88]. Thus NO· can induces cell 
death by necrosis through inhibition of mitochondrial respiration [89,90], or trigger 
apoptosis mediated by the mitochondrial permeability transition and by citochrome c 
release [91]. These disparate effects may be explained by the wide range of potential 
biochemical targets of NO· in the cell, including tyrosine, and methionine residues in 
proteins; metal-containing prosthetic groups such as heme moieties; and other reactive 
molecules including O2

·-. In addition, the abundance of potential targets and the dose 
dependence of the responses may explain the diversity of effects that have been observed 
under different experimental conditions [81].  
Given that a majority of studies indicate that NO· functions in a cardioprotective role 
during myocardial ischemia and preconditioning [92], it becomes important to identify the 
mechanism(s) responsible for these protective effects. Putative mechanisms include the 
beneficial effects resulting from NO·-mediated increases in cGMP [93,94], an attenuation 
of calcium accumulation in myocytes [95], a decrease in myocardial oxygen consumption 
[96], an opening of the mitochondrial ATP-dependent potassium channels [97-99], or an 
inhibition of mitochondrial permeability transition during IR [100], and also a protective 
role of NO· against loss of mitochondrial membrane potential (∆ψ) and apoptosis was 
shown [101]. 
ROS and oxidative stress contribute to the cell injury associated with IR, based on the 
observations that overexpression of antioxidant enzymes confers protection [102,103] and 
that chemical antioxidants administrated throughout the course of IR experiments decrease 
cell death [13]. NO· is capable of inducing immediate protection when administered to the 
heart which suggests that it could acts by attenuating oxidative stress in the cell [103]. 
A heavily debated features of NO· is its cytotoxic effect. The controversy arises from 
observations reporting both cytotoxic and cytoprotective effects of NO· depending on 
variables of the assay systems used. In cases where NO· was found cytotoxic, it was 
questioned whether NO· directly or indirectly, through the formation of more reactive 
oxidative species such as ONOO- exerted its cytotoxic effects [5,103]. 
 
Peroxynitrite and myocardial IR injury 
Increasing evidence supports the role of ONOO- generation as a pivotal mechanism of cell 
dysfunction and cell death in a number of pathological conditions, including circulatory 
shock [104], atherosclerosis [105], and IR injury [106]. ONOO- can produce considerable 
damage to most cellular components either directly, via one-or two-electron oxidations, or 
indirectly, via the generation of free radicals formed during ONOO- homolysis (yielding 
·OH and NO·

2 radicals) or from its reaction with carbon dioxide (yielding CO3
·- and NO·

2) 
[13,107]. The myocardial cytotoxicity of ONOO- involves oxidation of proteins (primarily 
on cysteine-bound thiols), lipids, DNA and nitration of protein tyrosine residues represent 
the major toxic consequences of ONOO- in biological systems [108,109]. This oxidant, 
acts as a potent signaling molecule in cardiomyocytes, activating metalloproteinases [110], 
all members of the MAP kinase family [111], inhibiting key myocardial enzymes such as 
reticulum sarcoplasmic Ca2+ ATPase [112], and creatine kinase [113], and modulating of 
nuclear factor NFκB signaling [114]. Furthermore, a major pathway of ONOO- dependent 
myocardial cytotoxicity relies on oxidative DNA damage and activation of the nuclear 
enzyme PARP (reviewed in [115]). Activated PARP cleaves its substrate nicotinamide 
adenine dinucleotide (NAD+) into nicotinamide and ADP-ribose.  
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ADP-ribose polymers become attached to a variety of proteins, whose function becomes 
thereby modulated [116]. The major collateral damage related to PARP activation is the 
severe depletion of cellular NAD+ stores, translating into reduced glycolytic activity and 
depressed mitochondrial electron transport, which eventually culminate in bioenergetic 
collapse and cell necrosis [117]. In contrast to its role in cell necrosis, the role of ONOO- 
in triggering cardiomyocyte apoptosis has been poorly investigated [116]. Apoptosis is 
orchestrated by the proteolytic activation of cysteine proteases known as caspases and 
regulated by proteins belonging to the bcl-2 family. Distinct pathways of apoptosis 
converge to the activation of executioner caspase-3, which cleaves multiple downstream 
cellular targets [117]. 
In summary, detecting and defining the participation of NO· and ONOO- during cell and 
tissue damage in cardiovascualr diseases is an active and rapidly evolving area of research. 
More extensive and judicious application of current methodologies and development of 
more specific ones, will further contribute to a major understanding of the processes in 
which are implicate and will propitiate an appropriate pharmacological interventions. 
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