Newsletter Pate

Patel et al.

HERBAL PLANTS: AS SOURCE OF ANTI-MICROBIAL COMPOUNDS

Patel Manish A, Patel Paras K, Chaute Bharat S

Department of Pharmacology, C.K.Pithawalla Institute of Pharmaceutical Science and Research, via magdalla port, Dumas road, Surat- 395007, Gujarat, India. Corrospondance E-mail: hdpharmacology@gmail.com

Summary

In recent years, there is increase in interest in search of drugs derived from plants. Plants are rich source of wide variety of secondary metabolites, like tannins, terpenoids, alkaloids and flavanoids which have been found in vitro to have antimicrobial activity. The disadvantage of available antibiotics is development of resistance and becomes ineffective against some viruses and bacterias. So, it is required to have better antimicrobial agent have broad spectrum of activity and at the same side it should be safe. Plants constituents have wide range of structural variation, this provide discovery of new molecular structures as lead compounds. This review attempts to summarize some medicinal plant having antimicrobial activity. These plants are effective against microorganism in vitro. Phytochemicals of these plants are subjected to human and animals studies to known their effectiveness in whole body system.

Key words: Antimicrobials, Phytochemicals, Antibiotics,

Introduction

"An apple a day keeps the doctor away". Healing powers in plant is an ancient idea. There has been a revival of interest in herbal medicines. This is due to increased awareness of the limited ability of synthetic pharmaceutical products to control major diseases and the need to discover new molecular structures as lead compounds from the plant kingdom. Nature has been a source of medicinal agents for thousands of years and an impressive number of modern drugs have been isolated from natural sources, many based on their use in traditional medicines. Various medicinal plants have been used for years in daily life to treat disease all over the world. They have been used as a source of medicine. In fact, plants produce a diverse range of bioactive molecules, making them a rich source of different types of medicines. Ethanopharmacologists, botanists, microbiologists and natural products chemists are combing the earth for phytochemicals and "leads" which could be developed for treatment of infectious diseases. Now a days for the infectious diseases large number of antibiotics are used, but antibiotics have their own disadvantages like toxic effects, resistance of microorganism. Many plant constituents are effective antimicrobials as well as safe. Phenols and phenolic acids are effective antimicrobial agents act by inhibiting enzyme (1).Quinones form complex with nucleophilic aminoacid in protein, leads to inactivation and loss of function of protein (2). Flavanoids also form complex with protein, more lipophilic flavanoids may also disrupt microbial membrane (3).

Along with other physiological activities, tannins are also effective antimicrobial agents. Tannins inactivate microbial adhesion, enzymes, cell envelopes transport protein etc. they also form complex with polysaccharides (4). Terpenoids and essential oils are also very effective antimicrobial agents. They are effective aginsts bacteria, fungi, viruses and protozoa (4). There are many other plant constituents which are also very effective broad spectrum antimicrobial agents.

Plant name	Family	Effective against	Reference
Pulicaria dysenterica	Compositae	Aqueous extract of the plant	5
		is effective against vibrio	
		cholerae and B. cereus.	
		Methanolic and chloroformic	
		extract effective against	
		vibrio cholerae and S.	
		aureus.	
Species of Glaucium	Geraniaceae	The methanol and	6
G. grandiflorum, G.		chloroform extracts were	
oxylobum, and G.		more active against Gram-	
paucilobum		negative microorganisms E.	
		coli, P. aeruginosa,	
		K. pneumoniae. The	
		chloroform extracts were	
		found to be most effective	
		against S. aureus, S. sangui,,	
		E. coli, P.	
		aeruginosa, and K.	
		pneumoniae	
Chelidonium majus	Papaveraceae	The ethanolic extract of the	7
		root of this plant is effective	
		against B. cereus S. aureus	
Sanguisorba	Rosaceae	Ethanolic extract of aerial	7
officinalis		parts of this plant is effective	
		against S. aureus. The	
		ethanolic extract of the	
		rhizomes of this plant is	
		effectve against B. cereus, S.	
		aureus, E. coli, P. aeruginosa	
Tussilago farfara	. Compositae	The ethanolic extract of	7
		aerial parts and rhizome is	
		effective against B. cereus	
		and S. aureus	
Ocimum gratissimum	Labitae	The oil of this plant is	8
		effective against E. coli, S.	
		aureus, S.typhi and S.	
		typhimurium	

Following are some of the effective antimicrobial medicinal plants.

Pelargonium radula	Geraniaceae	The ethanolic extract of the plant is effective aginst 14 bacterial, 8 yeast, 5 mould and 3 dermotophyte strain. The most sensitive bacterias are E. coli, B. subtilis, B. pumilus, S. aureus, Salmonell spp and P. aeruginosa.	9
Piper regnellii	Piperaceae	Hydroalcoholic(90- 10%)extract have good activity against S. aureus and B. subtilis, a moderate activity on P. aeruginosa, and a weak activity against E. coli	10
Punica granatum	Punicaceae	Hydroalcoholic(90- 10%)extract showed good activity on S. aureus	10
Eugenia uniflora	Myrtaceae	Hydroalcoholic(90- 10%)extract moderate activity on both S. aureus and E. coli	10
Sambucus canadensis	Caprifoliaceae	Hydroalcoholic(90- 10%)extract shown moderate activity against B. subtilis	10
Carica papaya	. Caricaceae	Ethanolic extract of epicarp, endocarp and seeds have significant antibacterial activity on S. aureus, B.cereus, E. coli, P. aeruginosa and Shigella flexneri	10

Bidens pilosa	Asteraceae	The water extracts showed a higher activity against B. cereus and E. coli. Ethanol extracts of all species were active against S. aureus	11
Jacaranda mimosifolia	Bignoniaceae	The water extracts effective against B. cereus and E. coli. Ethanol extracts of all species were active against S. aureus	11
Piper pulchrum	Piperaceae	The water extracts showed a higher activity against B. cereus and E. coli. Ethanol extracts of all species were active against Staphylococcus aureus	11
Hedychium larsenii	Zingiberaceae	Oil is effective against B. cereus, B. subtilis, S. aureus. P. vulgaris,P. aeruginosa, P. fluorescens, S. typhi, S. marcescens	12
Syzyium aromaticum	Myrtaceae	Hot water, methanol and ethanol extracts Methicillin- resistant Staphylococcus aureus(MRSA) and B. subtilis, multidrug resistant P. aeruginosa and enterohemorrhagic E. coli	13
Cinnamomum cassia	Lauraceae	Hot water, methanol and ethanol extracts Methicillin- resistant Staphylococcus aureus(MRSA) and B. subtilis	13

Salvia officinalis	Lamiaceaea	Hot water, methanol and ethanol extracts Methicillin- resistant Staphylococcus aureus(MRSA) and B. subtilis, multidrug resistant P. aeruginos aand enterohemorrhagic E. coli	13
Thymus vulgaris	Lamiaceaea	Hot water, methanol and ethanol extracts Methicillin- resistant Staphylococcus aureus(MRSA) and B. subtilis, multidrug resistant P. aeruginosa and enterohemorrhagic E. coli	13
Rosmarinus officinalis	Labiatae	Hot water, methanol and ethanol extracts Methicillin- resistant Staphylococcus aureus(MRSA) and B. subtilis	13
Melissa officinalis	Labiatae	Ethanolic extract is effective against E. coli, B. subtilis, S. aureus, S. epidermidis, P. aeruginosa	14
Rhus coriaria L.	Anacardiaceeae	Ethanolic extract is effective against E. coli, B. subtilis, S. aureus, S. epidermidis, P. aeruginosa	14
Dianthus coryophyllum	Caryophyllaceae	Ethanolic extract is effective against E. coli, B. subtilis, S. aureus, S. epidermidis, P. aeruginosa	14

Piper nigrum	Piperaceae	Ethanolic extract is effective against E. coli, B. subtilis, S. aureus, S. epidermidis, P. aeruginosa	14
Capsicum annum L.	Solanaceae	Ethanolic extract is effective against E. coli, B. subtilis, S. aureus, S. epidermidis, P. aeruginosa	14
Erica arborea	Ericaceae	Ethanolic extract is effective against E. coli, B. subtilis, S. aureus, S. epidermidis, P. aeruginosa	14
Colutea arborescens	Leguminosae	Ethanolic extract is effective against E. coli, B. subtilis, S. aureus, S. epidermidis, P. aeruginosa	14
Cuminum cyminum	Umbelliferae	Ethanolic extract is effective against E. coli, B. subtilis, S. aureus, S. epidermidis, P. aeruginosa	14
Combretum micranthum		Polyphenols of leaves is effective against S. dysenteriae, S. parathyphi B, K. ozenae, S. flexneri, S. boydii, S. thyphi, K. pneumoniae, S. aureus, S. aureus	15

Khaya senegalensis	Meliaceae	Polyphenols of Bark is effective against S. parathyphi B, S. aureus, S. aureus, S. dysenteriae Polyphenols of Leaves is effective against S. dysenteriae, S. aureus and S. aureus, S. parathyphi B, K. ozenae	15
Sida acuta	Malvaceae	Whole plant is effective against S. dysenteriae, S. parathyphi B, S. aureus, K. ozenae	15
Diplotaenia damavandica		Oils is effective against B. subtilis, S. aureus, S. epidermidis and E. coli	15
Juniperus communis	Cupressaceae	Essential oil is effective against B. cereu, B. subtilis,M. flavus, M. luteus,S. aureus, S. aureus,S. epidermidis, E. faecalis, Serratia spp. S. enteritidis, P. mirabilis, S.sonnei, K. oxytoca	16
Psidium guajava	Myrtaceae	Methanolic extract is effective against B. anthracis, B. cereus, C. sporogenes, C. pyogenes, E. coli, K. pneumoniae, P. aeruginosa, P. fluorescens	17

Mangifera indica	Anacardiaceae	Methanolic extract is effective against C. sporogenes, C. pyogenes, E. coli, K. pneumoniae, P. aeruginosa, P. fluorescens, S. dysenteriae, S. aureus, S. faecalis	17
Eucalyptus	Myrtaceae	Oil is effective against Psuedomonas spp. Proteus spp, methicillin resisitance. S. aureus.	18
Aloe barbedensis	Liliaceae	Latex is effective against salmonella, streptococcus, S, aureus, Coyenebacterium	19
Matricaria chamomilla	Compositae	Phenolic acid is effective against M.tuberculosis, S.typhimurium, S. aureus	20
Panax notoginseng	Araliaceae	Saponins are effective against E.coli, Staphylococcus	20
Podocarpus nagi	Podocarpaceae	Flavon are effective against P.acne and other Gram positive bacteria	21
Mimosa pudica	Fabaceae	Hydoalcoholic extract is effective against B.subtilis, S. aureus, K. pneumoniae, P. aeruginosa, E.coli, S. typhi	22

Aegle marmelos	Rutaceae	Hydoalcoholic extract is effective against B. subtilis, S. aureus, K. pneumoniae, P. aeruginosa, E.coli, S. typhi	22
Sida cordifolia	Malvaceae	Hydoalcoholic extract is effective against B. subtilis, S. aureus, K. pneumoniae, P. aeruginosa, E.coli, S. typhi	22
Bergenia ciliata	Saxifragaceae	Root and leaves extract were promising against gram positive and gram negative bacteria viz. B. subtilis, B. megaterium and P. aeruginosa	23
Acorus calamus	Acoraceae.	Methanolic extract of rhizome is effective against S. aureus, E.coli, P. aeruginosa, S. boydii	24
Centella asiatica	Apiaceae.	Methanolic extract entire plant is effective against S. aureus, E.coli, P. aeruginosa, S. boydii	24
Justicia adhatoda	Acanthaceae	Methanolic extract leaves is effective against S. aureus, E.coli, P. aeruginosa, S. boydii	24
Zanthoxylum armatum	Rutaceae	Methanolic extract fruits is effective against S. aureus, E.coli, P. aeruginosa, S. boydii	24

Pharmacologyonline 2: 401-411 (2010) Newsletter

Vernonia anthelmintica	Compositae	Methanolic extract seeds is effective against S. aureus, E.coli, P. aeruginosa, S. boydii	24
Myrica esculenta	Myricaceae	Methanolic extract bark is effective against S. aureus, E.coli, P. aeruginosa, S. boydii	24

Conclusion

Many plants are effective against wide range of bacteria, fungi and viruses including HIV, which can produce very severe infection in human being. Now a day many plant products available in market for treatment of infection. But it is required to estimate the purity of product and to authentify the phytochemicals. It should be required that products containing botanical ingredients specify the part of the plant used. It would be advantageous to standardize methods of extraction and in vitro testing so that the search could be more systematic and interpretation of results would be facilitated. All the phytochemicals should be studied for their toxicity and safety.

References

- 1. Mason TL, WassermanBP. Inactivation of red beet beta-glucan synthase by native and oxidised phenolic compounds. Phytochemistry 1987; 26:2197-2202.
- 2. SternJL, Hagerman AE, Steinberg PD, MasonPK. Phlorotannin-protein interactions.J.Chem.Ecol 1996; 22: 1887-1899.
- 3. Tsuchiya H, Sato M, Miyazaki T, Fujiwara S, Tanigaki S, Ohyama M et al. Comparative study on the antibacterial activity of phytochemical flavanones against muthicillin resistance staphylococcus aureus. J.Ethanopharmacol. 1996; 50:27-34.
- 4. Cowan MM. Plant products as antimicrobial agents. Clinical microbiology reviews, 1999; 12(4): 564-582.
- 5. Nickavar LB, Amin GR, Ghavamian P. Antimicrobial Activity of Pulicaria dysenterica. Iranian Journal of Pharmaceutical Research, 2002; 1: 31-32.
- ⁶ Morteza-Semnani K, Saeedi M, Reza Mahdavi M. Antibacterial Studies on Extracts of Three Species of Glaucium from Iran. Pharmaceutical Biology. 2005; 43(3): 234 – 236.
- Janovska D, kubikova K, kokoska L. Screenig of antimicrobial activity of medicinal plant species of traditional Chinese medicine. Czech J. food .Sci. 21(3):107-110.
- 8. Adebolu TT, Oladimeji SA. Antibacterial activity of leaf extract of ocimum gratissimum on selected diarrhoea causing bacteria in southwestern Nigeria. African journal of biotechnology. 2005;4(7): 682-685.

Patel et al.

- 9. Pepeljnjak S, Kalodera Z, Zovko M. Investigation of antimicrobial activity of Pelargonium radula. Acta pharma. 2005; 55:409-415.
- Holetz FB, Pessini GL, Sanches NR, Garcia Cortez DP, Nakamura CV, Dias Filho BP. Screening of Some Plants Used in the Brazilian Folk Medicine for The Treatment of Infectious Diseases. Mem Inst Oswaldo Cruz, Rio de Janeir. 2002; 97(7): 1027-1031.
- 11. Rojas JJ, OchoaVJ, Ocampo SA, Munoz JF. Screening for antimicrobial activity of ten medicinal plants used in Colombian folkloric medicine: A possible alternative in the treatment of non-nosocomial infections. BMC Complement Altern Med. 2006; 17; 6(1):1-6.
- 12. Dan GM, Shiburaj S, Mathur GS, George V. Chemical composition and antibacterial activity of the rhizome oil of Hedychium larsenii. Acta Pharm. 2005; 55, 315–320.
- Bassam A, Ghaleb A, Dahood A, Jarrar N, Adwan K. Antibacterial Activities of Some Plant Extracts Utilized in Popular Medicine in Palestine. Turk J Biol 2004; 28: 99-102.
- 14. Omer E. Antibacterial and antifungal activity of ethanolic extracts from eleven spice plants. Biologia. 2006; 61(3) : 275-278.
- 15. Karou D, Dicko MH, Simpore J, Traore AS. Antioxidant and antibacterial activities of polyphenols from ethnomedicinal plants of Burkina Faso. African Journal of Biotechnology. 2005,4 (8): 823-828.
- Pepeljnjak S, Kosalec I, Kalozera Z. Antimicrobial activity of juniper berry essential oil (Juniperus communis L., Cupressaceae). Acta Pharm. 2005; 55: 417–422.
- 17. Akinpelu DA, Onakoya TM. Antimicrobial activities of medicinal plants used in folklore remedies in south-western. African Journal of Biotechnology. 2006; 5 (11): 1078-1081.
- 18. Trivedi NA, Hotchandani SC. A study of the antimicrobial activity of oil of Eucalyptus. Ind J. Pharmaco. 2004; 36(2): 93-95.
- 19. Martinez MJ, Betancourt J, Alonso-Gonzalez N, Jauregut A. Screening of some Cuban medicinal plants for antimicrobial activity. J. of Ethanopharmacol. 1996; 52:171-174.
- 20. Bose PK. On some biochemical properties of natural coumarins. I. Indian. Chem. Soc. 1958; 58:367-375.
- 21. Kubo I, Muroi H, Kubo A. Naturally occurring antiacne agents. J. Nat. Prod. 1994; 57:9-17.
- 22. Balakrishnan N, Bhaskar VH, Jayakar B, Sangameswaran B. Antibacterial activity of Mimosa pudica, Aegle marmelos and sida cordifolia. Phcog mag. 2006; 2(7): 198-199.
- 23. Mazhar-ul-Islam, Azhar I, Mazhar F, Usmanghani K, Ahmad A, Gill MA, et al. Evaluation of antibacterial activity of Bergenia ciliate. Pak J Pharm Sci. 2002; 5(2):21-27.
- 24. Panthi MP, Chaudhary RP. Antibacterial activity of some selected folklore medicinal plants from west Nepal, Scientific world, 2006; 4(4): 16-21.