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Summary 

 

Coronary heart disease (CHD) is defined as heart 

disease due to an abnormality of the arteries that 

supply blood and oxygen to the heart. It is estimated 

to be the most common cause of death globally by 

2020. Hypertension is one of the leading causes of 

disability, morbidity and mortality among the 

population. Although the exact cause and mechanism 

of hypertension is not know and attributed to the 

complex and multifactorial process, various genetic 

and environmental factors, such as high sodium 

intake, cigarette smoking and mental stress etc. are 

prominently involved. The antihypertensive drug 

development is a continuous process and success of 

which largely depend upon selection of suitable 

animal model. The ideal animal model for 

hypertension research should have human-like 

cardiovascular anatomy, hemodynamics, and 

physiology. The aim of this article is to briefly review 

the most widely used rodent models of experimental 

hypertension and recent advances. 
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Introduction 

 

Hypertension is most common cardiovascular disease and is a major 

public health issue.
[1]

 Recent studied have reported an increasing 

trend in the prevalence of hypertension in Indian subcontinent. This 

increase was found to be about 30% in urban population and 10% in 

rural habitants in last three decades.
[2, 3] 

The uncontrolled 

hypertension further result in serious life threatening out comes like 

CHD, and hence effective antihypertensive drug therapy has got 

mainstay in cardiovascular disease management.
[4]

 

The pathophysiology of hypertension is complex and can be 

influenced by various parameters like food habits, life style and age 

etc, the drug therapy need to be modified accordingly. The animal 

models of hypertension share many features which are common to 

human hypertension. The antihypertensive drug discovery and its 

fruitful outcome are largely dependent on selection of suitable 

animal model during the preclinical study phase. 

In general an ideal animal model of hypertension should fulfill the 

following criteria
 [5]

: 

• It should be feasible in small animals. 

• It should be able to predict the potential antihypertensive properties 

of an agent. 

• It should consume minimal quantities of compounds. 

• It should be simple to perform and uniformly reproducible. 

• It should be comparable to some form of human hypertension. 

 

Preclinical Screening Models for Hypertension 

The various types of preclinical Screening models of hypertension 

being used are: 

1. Surgically induced hypertension 

2. Endocrine hypertension 

3. Dietary hypertension 

4. Neurogenic hypertension 

5. Psychogenic hypertension 

6. Chemically induced hypertension 

7. AG II infusion induced hypertension  

8. Recent advances
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Surgically Induced Hypertension:  

The Goldblatt et al in 1934 introduced the first animal model of 

hypertension in dogs evoked by unilateral constriction of renal artery 

(2K1C model) and was followed by similar demonstration in rats 

and rabbit in same decade. End organ damage in 2K1C model 

depends on size and time of clipping and usually including 

endothelium dysfunction. In dogs, achieving a sustained increase in 

blood pressure is more difficult because of their pronounced renal 

autoregulatory capacity.
 [6]

 

Renal hypertension is produced by renal artery constriction, which 

activates peripheral renin angiotensin aldosterone System (RAAS) 

and sympathetic nervous system. Various methods of inducing 

renovascular hypertension as described by Goldblatt are: 

A) Two Kidney One Clip (2K1C) Hypertension:
  

In 2K1C model of hypertension the renal artery is constricted on 

only one side with other artery (or kidney) left untouched. This 

result in sustained increase in BP due to increased plasma renin 

activity (PRA), which in turn increases circulating angiotensin-II, a 

potent vasoconstrictor However, there is no salt and water retention 

because of the other normal kidney being intact. Thus, the resultant 

hypertension at this stage is renin-angiotensin dependent. Addition 

to this 2K-1C animals showed high BP, increased serum 

concentration of PGE2 and TxB2, hypertrophy of the unclipped 

kidneys, but not in the clipped kidneys and NHE-1 and NHE-3 

isoforms were increased in both the 2K-1C kidneys, whereas α-actin 

was increased in the clipped but not in unclipped kidneys. Sodium 

pump activity was decreased in the clipped kidneys, but remained 

unchanged in the unclipped kidneys.
 [7-14]

 Following general 

anesthesia with ketamine (1mg/100 g i.p.,), a Goldblatt renovascular 

hypertension (2K1C) is induced in rodents as follows:A 

retroperitoneal flank incision is made and the left renal artery is 

exposed and cleared. Then a U shaped silver clip with a gauge of 

0.25 mm is placed around the renal artery and secured in place and 

the incision is sutured and the animals are returned to their cages.
 [12, 

14]
 

B) One Kidney One Clip (1K1C) Hypertension: 

 Constriction of renal artery is done on one side and contralateral 

kidney is removed. There is increase in BP within few hours due to 

rapid salt and water retention. 
 [15, 16]
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C) Two Kidney Two Clip (2K2C) Hypertension:  

The Na
+
-deplete 2K2C hypertensive rat is an appropriate model for 

investigating the action of drugs which are designated for renin-

angiotensin system blockade in high-renin patients. Constriction of 

aorta or both renal arteries is done in 2K2C. There is a patchy 

ischemic kidney tissue, which secretes renin leading to increased BP. 
[16]

 

Endocrine Hypertension:  

The most common endocrine model to induce hypertension is 

administration mineralocorticoids specially deoxycorticosterone 

acetate (DOCA). Mineralocorticoids cause retention of sodium and 

water in the body leading to increase blood volume and hence 

increase the blood pressure. Glucocorticoids can also induce 

hypertension in rodents, possible mechanism via activation of RAS, 

but they are less effective than DOCA salt. 
[17]

 

A) DOCA-salt Induced Hypertension: 

DOCA-salt treated animals, the probable mechanism of induction of 

hypertension due to retention of sodium and water, which increases 

circulating blood volume and results in hypertension. Rennin 

angiotensin system is suppressed in DOCA salt hypertension model, 

so use of ACE inhibitor or AT1 receptor antagonist should not affect 

the blood pressure. 
[17, 18] 

A role of brain atrial natriuretic peptide 

(ANP) was also suggested in development of hypertension because 

of the increased ANP content of some brain nuclei in DOCA–salt 

hypertensive rats. 
[19, 20] 

For induction of hypertension, male 

Sprague-Dawley rats are anesthetized with sodium pentobarbital (50 

mg/kg, i.p.), and the right kidney of each rat was excised through a 

right flank incision. After a l-week recovery period, these rats are 

subcutaneously administered DOCA (15 mg/kg) suspended in corn 

oil, twice weekly upto four weeks and drinking water is  replaced by 

1% NaCl.
[21-25]

   

B) Adrenal Regeneration Hypertension: 

Hypertension is produced in rats by unilateral nephrectomy followed 

by removal of right adrenal gland and enucleation of left adrenal 

gland. Drinking water is replaced with 1% saline. Hypertension 

develops during regeneration of adrenal glands in about 2 weeks
 [26]

. 

Dietary Hypertension:  

A) Increased Salt Intake: 
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Physiologically, normal kidney has the ability to excrete easily the 

daily salt load without allowing a marked rise in extracellular 

volume. Chronic ingestion of excess salt produces hypertension in 

rats which mimics human hypertension morphologically. High salt 

intake hypertension has been produced in rats, rabbits and chicks by 

replacing drinking water with 1 % sodium chloride for 9-12 months.
 

[27]
 

B) High Fructose Diet: 

            Several studies have demonstrated that chronic fructose feeding 

leads to insulin resistance, glucose intolerance, hyperinsulinemia and 

hypertriglyceridemia in relatively short time in normal rats
 [28-30]

. 

These metabolic changes lead to essential hypertension. Male 

Sprague-Dawley rats were fed a fructose-enriched diet that consisted 

of 21% protein, 5% fat, 60% carbohydrate, 0.49% sodium, and 

0.49% potassium for 5 weeks, which produced hyperinsulinemia, 

hypertension, and hypertriglyceridemia. In this model rats 

maintained on the above fructose diet upto 7 weeks developed high 

systolic blood pressure.
 [31-32]

 

�eurogenic Hypertension: 

Vasodilator and depressor reflexes, originating in the baroreceptor 

areas of the carotid sinus and aortic arch, Stimulation of the afferent 

buffer fibers exerts an inhibitory influence on the vasomotor center, 

and their sectioning leads to a persistent rise in blood pressure. In 

this way, acute neurogenic hypertension can be induced in dogs
[33]

. 

Electrical or chemical stimulation of different areas of brain leads to 

development of hypertension in rats e.g., electrical stimulation of 

hypothalamus, glutamate injection into the rostral ventrolateral 

medulla. 
[34]

 

Denervation of Sinoaortic Baroreceptors: 

This is the most often used neurogenic model of hypertension. In 

dogs, cardioaortic nerve is located at the junction of superior 

laryngeal and vagus nerve and runs in the form of several fine 

strands. These strands unite and may be traced back as a white band 

lying within the vagal sheath alongside the cervical sympathetic 

nerve. Following bilateral vagotomy and carotid sinus denervation, 

the region is painted with 5% phenol and then alcohol to ensure 

complete denervation of the carotid sinus. There is sudden increase 

in BP. The dog is allowed to equilibrate for approximately 30 min 

and a bolus of the test compound can be given by intravenous 
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administration. BP returns to normal within about 2 days because the 

response of vasomotor center to the absent baroreceptor signals 

fades away, which is called “resetting of baroreceptors”. Thus, this is 

only an acute type of hypertension. In rabbits, right carotid sinus can 

be removed together with 2 cm segments of the right cervical 

sympathetic and depressor nerves while the left carotid sinus can be 

removed later on. In rats, sinoaortic denervation leads to marked and 

sustained increase in BP, which is comparable to renovascular 

hypertension or DOCA-induced hypertension. 
[35]

 

Psychogenic Hypertension:  

It has been reported that elevation of BP resulting from repeated 

exposure to stressful situation may lead to state of persistent 

hypertension. 
[36] 

The stress induced hypertension is associated with 

either normal or suppressed plasma rennin activity values, 

suggesting that the hypertension in these animals is not rennin 

dependent
37

. Borderline hypertensive rats (BHR) are useful for 

psychogenic hypertension. BHRs that are exposed to daily sessions 

of either short (20 min) or long (120 min) duration air-jet stimulation 

developed hypertension within 2 weeks in comparison to home cage 

controls. Other types of stress have been applied, such as emotional 

stimuli, psychosocial stress, immobilization stress and electrical 

stimuli, but in all cases the results are similar. 
[38]

 

Chemically Induced Hypertension: 

A)  Dexamethasone Induced Hypertension:  

Dexamethasone is a synthetic glucocortocoid that is commonly used 

in clinical practice and that increases blood pressure in rats and in 

human beings. Chronic dexamethasone treatment increases oxidative 

stress and systolic blood pressure in rats and reactive oxygen species 

(ROS) production in human umbilical vein endothelial cells. 
[39]

 

Dexamethasone hypertension is found to be accompanied by a 

decrease in serum reactive nitrogen intermediate (NOx) 

concentration and endothelial nitric oxide synthase (eNOS), mRNA 

levels in heart, kidney and liver in mice. 
[40-43]

 Dexamethasone 

(20µg/kg/day, in a volume of 1 mL/kg) is administered 

subcutaneously every day upto 13 days increased SBP from 122 ±5 

to 136±3 mm Hg. 
[39, 41]

 

B) Cadmium Chloride Induced Hypertension:  

Cadmium chloride induced hypertension might be due to the fact 

that the metal ion might mimic Ca
2
+ ion as a partial agonist and 
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produce a direct contractile effect on vascular smooth muscle. 
[44]

 

Hypertension is produced by chronic administration of Cadmium 

chloride (1 mg/kg/day, i.p, for 2 weeks).
 [5]

 

C) Cyclosporine Induced Hypertension: 

Cyclosporine is a macrolide antibiotic induced widespread 

vasoconstriction of systemic circulation and an increase in arterial 

blood pressure.
 [45]

 Chronic treatment with cyclosporine A (CsA) is 

associated with the development of arterial hypertension. CsA-

induced hypertension is accompanied by decreases in urinary 

NO2/NO3 and increases in TBXA2 suggested that a vasodilator 

pathway is suppressed and a vasoconstrictor pathway is activated, 

most likely NO and cyclooxygenase pathway to produce TBXA2, a 

vasoconstrictor. 
[46-51]

 CsA (25 mg/kg) in 1 ml of olive oil, ip 

injection daily for 7 days cause hypertension in Sprague–Dawley 

rats. 
[46]

 

D) L-�AME Induced Hypertension: 

Nitric oxide (NO) has a role in many cellular and cardiovascular 

phenomena, including the regulation of vascular smooth muscle 

tone. The chronic inhibition of NO biosynthesis by the oral 

administration of non- selective NO synthase (NOS) inhibitor N
ω
-

nitro-L-arginine-methyl ester (L-NAME) results in hypertensive 

cardiomyopathy in rats. This model is characterized by sustained 

increase in mean arterial pressure and a decrease in heart rate, a 

reduction in cardiac output, and changes in myocardial contractility, 

histological alterations consisting of extensive area of myocardial 

fibrosis, necrosis and increase in cardiac collagen levels. 
[52- 55]

 In 

this model L-NAME is given up to 4 weeks by oral routes 

(40mg/Kg) at the corresponding volume of 1 ml/kg body weight to 

induce hypertension. Blood pressure rise to increase after 2 week & 

these systolic Blood pressure values is reached between 170 & 190 

mm of Hg after 4 weeks.
 [52]

 

Hypertension Induced by AGII Infusion: 

AGII-induced hypertension is associated with a cardiac hypertrophy 

and fibrosis and activates pathways involved in oxidative stress in 

the heart, the vessel wall and the brain.
[56, 57]

 The continuous delivery 

of high doses of AGII (0.7 mg/kg/ day) by means of osmotic pumps 

can rapidly induce an increase in blood pressure of around 45 

mmHg. 
[5] 
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Recent advances:
 

The most common cause of hypertension in humans is essential 

hypertension, in which multiple genes contribute to the individual 

phenotype, each by diverse allele effects, penetrance, and 

contributions. As a result, no single genetic defect can explain 

development of essential hypertension in humans. 
[58] 

The decoding 

of the human and mouse genomes allowed generation of transgenic 

or gene-targeted models suitable for studying hypertension. The 

phenotype-driven experimental approach takes advantage of the 

natural variation among inbred strains and crosses to find 

quantitative traits and determine which genes are responsible. In 

contrast, in the genotype-driven approach, a known gene is studied 

with genetics-based interventions (overexpression or ablation).
 [59, 60] 

Gene function in hypertension is most often studied with gene 

overexpression (e.g., transgenic) or deletion (knockout), usually 

related to candidate systems involved in regulation of vascular tone, 

renal physiology, and/or electrolyte and fluid homeostasis, and 

several experimental models of Genetic hypertension have been 

developed (Table 1). 
 

“Table 1: Various experimental models of Genetic hypertension” 

 

Phenotype-driven Genotype-driven 

Spontaneously hypertensive 

rat (SHR) 

SHR-stroke prone 

Dahl salt-sensitive rat 

Genetically hypertensive rat 

Sabra model 

Lyon hypertensive rat 

Obesity-related 

 

 

 

Renin-angiotensin system 

Sympathetic NS 

Atrial natriuretic peptide 

Nitric oxide 

Endothelin 

Neuropeptide Y 

Vasopressin 

Prostaglandin 

Kallikrein-kinin 

Vasopressin 

 

 Gene-targeting approaches in rodents can be performed for four 

main aims:  

(i) Studying the role of a single gene through its disruption 

or overexpression;  
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(ii) Analyzing the contribution of genes that transfer a 

susceptibility to end-organ damage;  

(iii)  Evaluating the effects of naturally occurring gene 

variants to regulate blood pressure and  

(iv) Comparing biological effects of human versus murine 

genes to blood pressure control in humanized mice.  

 A)  RAS (Renin-angiotensin System): 

Association of gene polymorphism of the AT1 receptor, 

angiotensinogen, or ACE with hypertension has been controversial 

and likely interacts with comorbid conditions. Both transgenic and 

knockout mouse models of various components of the RAS have 

been constructed. Mice may have 2 subtypes of the gene for AT1 

(AT-1a and AT-1b) and the REN gene (Ren-1d and Ren-2d). 

Overexpression of the rat angiotensinogen gene in mice, without or 

with concomitant overexpression of rat renin, leads to development 

of high blood pressure. Indeed, blood pressures in mice carrying 

various numbers of copies of the angiotensinogen gene are 

predictable and increase at approximately 8 mm Hg per gene copy, 

whereas conversely mice completely knocked-out for this gene are 

hypotensive. Similarly, ACE knockout mice are also hypotensive, 

especially males and mice selectively deficient of the vascular rather 

than proximal tubular enzyme. 
[58]

 

B) Other Genetic Models: 

Genetic hypertension in rats may be accompanied by a defect in 

renal prostaglandin catabolism. Nevertheless, gene-targeted mutants 

for either the PGI2 or the thromboxane-A2 receptors, and for 

cyclooxygenase-1 and cyclooxygenase-2, have normal blood 

pressures. On the other hand, mice with targeted disruption of the 

PGE2 receptor display salt-sensitive hypertension, which implies a 

role for PGE2 in salt excretion, but regulation of blood pressure by 

PGE2 is influenced by its receptor expression, sex, and genetic 

background.
 [58, 59]

 

Conclusion 

 

With recent advances of molecular genetics, the rodents have 

become the human’s best friend, helping to study the mechanisms of 

many diseases. Genetic models of hypertension were especially 

successful in rodents and have encouraged studies in human 

population with the candidate gene approach, as well as the 
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development of new classes of drugs to decrease blood pressure and 

target organ injury. Importantly, nongenetic approaches have 

complemented the investigation of the effects of secondary 

hypertension on end-organ injury in a larger variety of animal 

models, thereby enriching our understanding of the pathophysiology 

of this disease. In addition, experimental models of hypertension 

associated with comorbidities common in clinical practice that 

accentuate development of hypertension and/or target organ injury 

may provide closer simulation of the human disease. The next few 

years will see very rapidly progress in the extent of our knowledge 

on the genetic basis of hypertension, and we can wish that new 

therapeutic strategies will be born from this research.  
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