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Abstract— Diabetes is a serious disease during which the 

body's production and use of insulin is impaired, causing glucose 

concentration level to increase in the bloodstream. The blood 

glucose dynamics is described using the Bergman minimal model. 

In this paper, higher-order sliding mode control techniques, in 

specific prescribed convergence law, super-twisting control 

algorithm, is used to robustly stabilize the glucose concentration 

level of a diabetic patient in presence of the parameter variations 

and meal disturbance. Intelligent systems have appeared in many 

technical areas, such as consumer electronics, robotics and 

industrial control systems. Many of these intelligent systems are 

based on fuzzy control strategies which describe complex systems 

mathematical model in terms of linguistic rules. By advent of 

these methods, new techniques have appeared from which fuzzy 

logic been applied extensively in medical systems. This paper 

surveys the utilization of fuzzy logic control. Based on this 

method, fuzzy logic controller is designed to tackle a control 

problem of the resulting highly nonlinear plant. It was shown 

also that the proposed schemes can perform well in simulation 

experiments. Finally the obtained results from these two 

methods, are verified based on comparison via digital computer 

simulation by MATLAB. 

 
Index Terms—— Diabetes, higher-order sliding mode control, 

super-twisting control algorithm,  fuzzy logic control.   

I. INTRODUCTION 

OMPLEXITY of a human biological system typically allows 

its relations to be expressed only in a nonlinear way. 

Because of this complexity, it is not simple to achieve insulin-

dependent diabetic therapies autonomously. Diabetes mellitus 

is a metabolic disorder of endogenous insulin allowing 

excessive amount of glucose to stay in blood. In general, 

blood glucose is transformed into energy required by human 

activities, such as, walking, and this transformation requires 

insulin functionality. However, in diabetes mellitus, since a 

human body fully or partially lacks the insulin functionality, 

unchanged glucose remains in blood.  
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A condition of high blood glucose profiles results in 

several complications, such as, eye, kidney, and nerve 

damage, called hyperglycemia. Thus, in order to avoid the 

hyperglycemia, a continuous supply of exogenous insulin is 

required, and the insulin dependent diabetic therapy usually 

does this. On the contrary, too much insulin supply may lead 

to a condition of low blood glucose profiles resulting in 

drowsiness, mental malfunctioning, irritability, and loss of 

consciousness [1]. This condition is called hypoglycemia 

and also dangerous to the diabetic. Thus, the insulin-

dependent diabetic therapy must concern both 

hyperglycemia and hypoglycemia by providing an 

appropriate amount of exogenous insulin timely. 

Implementing tight glucose control in critically ill patients 

is the most important issue in diabetes management. The 

current medical treatments suggest three to four daily glucose 

measurements and an equivalent number of subcutaneous 

insulin injections [2]. Finding less invasive and less frequent 

methods has been the subject of interest for many researchers 

who are working in this area. An alternative approach is to 

deliver insulin using a closed-loop device like a pump, which 

works like an artificial pancreas [3,4]. This closed-loop device 

would include a glucose sensor imbedded under the skin and 

an insulin pump implanted in the abdomen. The sensor can 

measure blood glucose concentration and pass the information 

to a feedback control system that would calculate the 

necessary insulin delivery rate using robust higher-order 

sliding mode control algorithms [5–7], to keep the patient 

under metabolic control. Imprecisely defined classes play an 

important role in human thinking. Fuzzy set theory derives 

from the fact that most natural classes and concepts are fuzzy 

rather than crisp nature. On the other hand, people can 

approximate well enough to perform many desired tasks. The 

fact is that they summarize from massive information inputs 

and still function effectively. For complex systems, fuzzy logic 

is quite suitable because of its tolerance to some imprecision. 

In the following sections a brief description is given of the key 

contribution which fuzzy control, estimation, and 

measurements technology have made in each of the topics 

which have been identified in a medical literature search.  

In this paper, higher-order sliding mode control techniques, 

in specific prescribed convergence law, super-twisting control 

algorithm, is used to robustly stabilize the glucose 

concentration level of a diabetic patient in presence of the 

parameter variations and meal disturbance. Intelligent systems 
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have appeared in many technical areas, such as consumer 

electronics, robotics and industrial control systems. Many of 

these intelligent systems are based on fuzzy control strategies 

which describe complex systems mathematical model in terms 

of linguistic rules. By advent of these methods, new 

techniques have appeared from which fuzzy logic been 

applied extensively in medical systems. This paper surveys the 

utilization of fuzzy logic control. Based on this method, fuzzy 

logic controller is designed to tackle a control problem of the 

resulting highly nonlinear plant. It was shown also that the 

proposed schemes can perform well in simulation 

experiments. Finally the obtained results from these two 

methods, are verified based on comparison via digital 

computer simulation by MATLAB. 

II. THE HUMAN INSULIN-GLUCOSE MODEL 

To procure the mathematical models of the human insulin 

glucose system, several approaches are taken by researchers. 

In these approaches, empirical and fundamental methods are 

preferably used by them. These approaches aim to describe the 

insulin-glucose dynamics as a couple of mathematical 

equations that should be easy to manipulate for the insulin 

therapies and should fully describe the characteristics of the 

internal insulin-glucose metabolism [8]. 

Basically, the empirical method uses a model structure 

(formula or equation) which is determined theoretically with 

several parameters. The behavior of this model structure is 

determined by only the input-output data of the system from a 

number of experiments. In this method, capturing the system 

behavior or data is the most time-consuming process. In an 

example of the linear structure of the insulin-glucose system, 

to represent glucose effects, two parameters are used, and to 

represent insulin effects, other two parameters are also used in 

order to close the model to the actual system. In addition to the 

input-output data, semi empirical method utilizes other 

physiological factors, such as dynamic behavior and kinetics 

to create a closer model of diabetic patients [8]. 

In the fundamental methods, a mathematical representation 

of the human internal system which is already known 

sufficiently by researchers constructs an insulin glucose 

model. This system behavior includes kinetics and material 

transport. According to investigating the internal system, a lot 

of data from the literature can be used to determine the system 

parameters. Usually the model averages studied behaviors. In 

particular, in constructing a fundamental diabetes model, the 

authors in [9] applied the insulin-release data of the β cells of 

the pancreas from a number of examinations to a mathematical 

representation. 

III. HISTORY OF CLOSED-LOOP CONTROL METHODS 

Over the last half century, automated systems for delivery 

of insulin have been a topic of much interest, envisioned as an 

intelligent treatment paradigm for the insulin-deficient patient. 

The concept of an artificial pancreas and the evolving 

algorithms during this time parallel the rise of the electronic, 

digitized computer age. The control of blood glucose levels 

has been likened to industrial processes in which a monitoring 

system (glucose sensor) evaluates an input (glucose levels) 

and uses a control system (e.g. algorithm programmed into a 

computer) to predictably control the output of that system 

(insulin infusion rate, see figure 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This system of artificially maintaining glycemic control 

requires three main components: 
 

1. Glucose sensing device (continuous or very frequent).  
 

2. Control device for analyzing blood glucose data and 

computing insulin dosing (computer or 

microprocessor).  
 

3. Insulin delivery device (usually a subcutaneous 

mechanical pump, potentially an implantable pump).  

 

Only within the last decade have continuous glucose 

sensing devices (the afferent limb of a closed loop system) 

been approved by regulatory agencies after overcoming 

accuracy and stability issues. Three currently-available models 

which are inserted into subcutaneous tissue have been 

approved in the USA due to success in clinical trials 

(Medtronic Guardian or Paradigm, Dexcom Seven, and Abbott 

Navigator). A fourth, the Gluco-Day sensor, a microdialysis 

device (Menarini), is approved in parts of Europe. Even 

without closed loop control, a recent 6-month study found that 

usage of these devices led to a substantial improvement in 

hemoglobin A1C without an increase in hypoglycemic 

episodes in persons with Type 1 diabetes [10]. Intravenous 

(IV) glucose sensors have been investigated in smaller trials 

[11] but IV devices are not typically used. In contrast to 

subcutaneous sensors, intravenous sensors are accompanied by 

more severe risks such as thrombosis, embolization, and 

intravascular infection. 

There have also been advances in insulin pump technology 

over the past 2 decades. Commercially-available insulin 

pumps deliver insulin by the subcutaneous route, though 
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Fig.1.  Principles of control systems applied to glycemic control 
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intraperitoneal delivery (leading to faster absorption and 

action than subcutaneous) is being studied in limited research 

settings [11]. Nonetheless, subcutaneous insulin delivery does 

not compare favorably with the physiological secretion of 

beta-cells directly into the blood stream, and confers risks 

when used in the setting of closed-loop management. For 

example, delay of subcutaneous insulin absorption and action, 

even with fast-acting analog insulin, constitutes a fundamental 

problem of most closed loop systems in persons with diabetes: 

the efferent delay. Specifically, elevated glucose levels after 

meals due to this delay lead to late and often excessive insulin 

delivery, leading in turn to hypoglycemia (overcorrection 

hypoglycemia). Stated in engineering terminology, there is an 

instability characterized by large oscillations in the controlled 

variable (glucose) due to marked efferent delay. Recently, a 

“semi-closed loop” or “hybrid” system involving open-loop 

insulin delivery before meals has been shown to lead to tighter 

glycemic control than fully closed loop treatment [12]. The 

attractiveness of a hybrid system rests on the well-known 

delay between administration of subcutaneous fast-acting 

insulin and its action. Insulin given before the meal in this 

fashion can be thought of as “anticipatory” rather than 

reactive. 

There have been multiple mathematical concepts with initial 

linear equations using first-order dynamics utilized in 

algorithms for closed loop glycemic control [13]. These early 

concepts could not be fully tested in animal or human studies 

and were rudimentary in terms of their ability to control blood 

glucose. Over the years, there came a clear need for models of 

glucose-insulin interaction that described the dynamics of 

carbohydrate homeostasis. A very early concept, Bolie’s two-

compartment model [13], gave way to Cerasi’s three-

compartment model [14,15]. Later, the Bergman/Cobelli well-

known minimal model of carbohydrate metabolism was 

published [16], and continues to provide an important 

contribution to some closed loop algorithms. This model 

generates indices of insulin action and insulin secretion and 

utilizes frequent glucose and insulin measurements during 

glucose clamp testing or intravenous glucose tolerance testing. 

It assumes a closed-loop relationship between glucose, insulin 

secretion and insulin action between a single glucose 

compartment and two insulin compartments [16]. It has been 

instrumental in defining the disposition index, a constant 

product of insulin sensitivity and insulin secretion [17]. 

Cobelli et al have modified the original model in order to 

improve the accuracy of estimating insulin action and glucose 

secretory characteristics [18]. 

 The ultimate role of any insulin delivery system is 

provision of insulin in a manner mirroring, as closely as 

possible, the human beta-cell. Beta-cell physiology and 

pathophysiology is an important topic of research and recent 

work emphasizes the acute effects of incretins and the chronic 

effects of amyloid [19]. Earlier beta cell reviews were silent 

on these issues and instead emphasized the many hormonal 

and non-hormonal input signals which regulate pancreatic 

insulin secretion [20]. These reviews of pancreatic beta cell 

secretion reveal something very important to this discussion. 

The strongest single regulatory factor affecting beta-cell 

insulin secretion is the concentration of glucose.  

IV. INSULIN-GLUCOSE REGULATION MODEL 

Until now, a wide range of models has been used to 

describe the insulin–glucose regulatory system dynamics in 

the human body. One of the pioneers in this task was Dr 

Richard Bergman, who developed the so-called ‘Minimal 

Model.’ Bergman minimal model, which is a commonly 

referenced model in the literature, approximates the dynamic 

response of a diabetic patient’s blood glucose concentration to 

the insulin injection using the following nonlinear differential 

equations [21]: 
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(1) 

 

where t = 0 shows the time glucose enters blood, ‘+’ sign 

shows the positive reflection to glucose intake and G(t), the 

glucose concentration in the blood plasma (mg/dl); X(t), the 

insulin’s effect on the net glucose disappearance, the insulin 

concentration in the remote compartments (1/min); I(t), the 

insulin concentration in plasma at time t (µU/ml); Gb, the basal 

pre-injection level of glucose (mg/dl); Ib, the basal pre-

injection level of insulin (µU/ml); p1, the insulin-independent 

rate constant of glucose uptake in muscles and liver (1/min); 

p2, the rate for decrease in tissue glucose uptake ability 

(1/min); p3, the insulin-dependent increase in glucose uptake 

ability in tissue per unit of insulin concentration above the 

basal level [(µU/ml)/min
2
]; n, the first-order decay rate for 

insulin in blood (1/min); h, the threshold value of glucose 

above which the pancreatic β cells release insulin (mg/dl); γ, 

the rate of the pancreatic β cells’ release of insulin after the 

glucose injection with glucose concentration above the 

threshold [(µU/ml)/min
2
/(mg/dl)].  

To show the complete dynamics of the glucose–insulin 

regulatory system, two other terms are considered in Equation 

(1). D(t) shows the rate at which glucose is absorbed to the 

blood from the intestine, following food intake. Since in 

diabetic patients, the normal insulin regulatory system does 

not exist, this glucose absorption is considered as a 

disturbance for the system dynamics presented in (1). This 

disturbance can be modeled by a decaying exponential 

function of the following: 

( ) tetD 05.05.0 −=  (2) 

where t is in (min) and D(t) is in (mg/dl/min). u(t), which is 

the controller, defines the insulin injection rate and replaces 

the normal insulin regulatory system of the body, which does 

not exist in diabetic patients. Therefore, the goal is to employ 

higher-order sliding model technique to design the appropriate 

control function, u(t) to compensate the uncertainties and 

disturbances and to stabilize the blood plasma glucose 

concentration of a diabetic patient at the basal level. It should 

be mentioned that the dynamics of the pump is neglected in 

the model introduced in Equation (1). 

It is worth noting that in reality D(t) is supposed to reduce 
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to zero or some constant value in finite time, and the 

asymptotic model (2) is an approximation of a real process. 

Since higher-order sliding model control (SMC) accounts for 

the worst case scenario, i.e. considering D(t) and its 

derivatives at their maximum values, the controller design will 

be the same for model (2) or any other more realistic models. 

The system introduced in Equation (1) can be rewritten in 

state-space form as follows: 

[ ] ( )
[ ]

[ ] [ ] ( )
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(3) 

Stabilizing the glucose concentration in the diabetic 

patient’s blood at the basal level Gb is an output-tracking 

problem thus, the tracking error is defined as the difference 

between the glucose concentration level and its basal value in 

the diabetic patient’s blood as 

( ) 1xGtGGe bb −=−=  (4) 

Given the dynamical system introduced in Equation (3), the 

controller u(t) must be designed such that e→0 in presence of 

the uncertainties, parameter variations, and disturbances, oral 

food intake, D(t). First the relative degree of the system must 

be defined. Assuming y = x1, the relative degree would be 

defined with the number of successive differentiation until the 

control appears in the equation. Relative degree r means that 

the controller u(t) first appears explicitly in the r
th

 total 

derivative of σ. Using (3), the control function appears in the 

equations after the third differentiation, i.e : 
( ) ( ) ( )tuxptxx 13

3

1 , −= ϕ  
(5) 

Since p3≠0, x1=0 and p3x1 є [1.2×10
-4

, 3×10
-2

], system (3) 

has a well-defined relative degree, r = 3. This allows us to 

design the controller for the system in Equation (3) that 

satisfies e→0. 

V. HIGH-ORDER SMC TECHNIQUE:  SUPER – TWIST CONTROL 

DESIGN 

The super-twist control algorithm continuously controls the 

system with relative degree, r = 1, in presence of bounded 

disturbances. In order to achieve relative degree 1, the sliding 

variable is designed as : 

ecece 01 ++= &&&σ  (6) 

    where c1 and c0 are real-valued constants chosen such that 

Equation (6) has the desired behaviour. To check the existence 

condition of the sliding mode control, the dynamics of the 

sliding variable must be derived using (6) as 

ecece &&&&&&&
01 ++=σ  (7) 

    Using (4) , (5) and (7) can be written as : 
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(8) 

Combining and simplifying the terms in (8) will give 

( ) ( )tuxpt 13+=ψσ&  (9) 

 

Where 

( ) ( ) ecectxt &&&
01, ++−= ϕψ  (10) 

For the sliding mode to exist Ψ˙(t) must be bounded by a 

positive real number [22(10)], i.e. 

( ) �t ≤||ψ&  (11) 

From Equations (3)–(5) it is obvious that the above 

condition is met and therefore sliding mode exists and the 

controller can be designed for the system of (3). Consider the 

following first-order nonlinear differential equation: 

( ) ( )∫ =++ tfdsign τσβσασ 2
1

&  
 

(12) 
 

where |f˙(t)| ≤ L. It has been proven [22] that the solution of 

this nonlinear differential equation and its first time derivative 

will converge to zero in a finite time if α  ≥ 0.5 (L)
(1/2)

 and      

β ≥ 4L, where L is a real positive constant. The super-twist 

control function can then be designed as 

( )∫−−= τσβσα dsignu 1
2

1

1
 

 

(13) 

The super-twist control algorithm (13) provides finite time 

convergence of the sliding variable (6) to zero but asymptotic 

convergence of the tracking error e due to the 

equation ecece 01 ++= &&&σ , i.e. the blood glucose will be 

stabilized at its basal level asymptotically. The asymptotic 

convergence would not create any problem since in case of 

insulin–glucose regulatory, the process itself is inherently 

asymptotic. 

VI. SIMULATION RESULTS (PART 1) 

A. Comparison Between PID Algorithm and Sliding Mode 

Control 

PID algorithms are offshoots of proportional derivative 

(PD) systems. A PD system from the company Nikkiso, in 

Japan, is used in hospital settings with continuous glucose 

monitoring, in order to control glucose. Garry Steil and his 

colleagues have been instrumental in conceptualizing and 

testing PID algorithms for closed loop control.  

The results of the simulations with PID algorithm are 

included in this part of paper. MATLAB is used to simulate 

the closed-loop system in order to show the validity of the 

proposed design according to Fig. 2. 
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Fig.2.  Simulation of  closed-loop system 

 by MATLAB using PID controller 
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By assumption Kp=0.12, Ki=0.00985 and KD=5 (for PID 

controller) and c0=3.4×10
-4

, c1=0.0255, α=63.36 and β=0.3493 

(for SMC), Fig. 3 shows the response of a sick person to the 

presence of the meal disturbance in t=0 using two methods. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is obvious that the glucose is completely stabilized at the 

basal level by using high-order SMC technique faster than PID 

algorithm.  

In the next part, MATLAB is used to simulate the closed-

loop system in order to show the response of a sick person to 

the presence of sudden variations in blood glucose 

concentration level. Fig. 4 illustrates the performance of 

closed-loop system in these conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As similar way, these conditions are used to simulate the 

closed – loop system in order to show the response of a sick 

person to the presence of sudden variations in blood glucose 

concentration level using high-order SMC technique. Fig. 5 

illustrates the performance of closed-loop system using this 

method.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Robustness Analysis 

To validate the proposed SMC method in Equation (13), the 

control function is applied to system (3) and the response of a 

sick person in presence of the meal disturbance is examined.  

To check the robustness of the control algorithm to the 

parameter variations, a set of parameters for three different 

patients have been used. Figure 6 shows the results obtained 

from the simulation. It is obvious that the transient responses 

of the different patients to the same controller are different, 

but in all three cases, the glucose is completely stabilized at 

the basal level in a reasonable time interval. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The values that have been used in implementing the model 

and its parameters are given in Table I. 

To check the robustness of the PID algorithm to the 

parameter variations, a set of parameters for three different 

patients have been used too. Figure 7 illustrates the results 

obtained from the simulation.  

Fig. 3.  Comparison proposed methods (PID & SMC) in  

blood  glucose regulatory  
 

0 200 400 600 800 1000 1200 1400 1600 1800
69

70

71

72

73

74

75

Time(sec)

G
lu

c
o

s
e

 le
v
e

l(
m

g
/d

l)

pid

smc

basal

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
60

70

80

90

100

110

120

Time(sec)

G
lu

c
o

s
e
 L

e
v
e
l(

m
g

/d
l)

patient

basal value

Fig. 4.  Curve of the response of a sick person to the presence of the sudden 

disturbances in blood glucose concentration level using PID controller 
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disturbances in blood glucose concentration level using SMC method 
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Fig. 6.  Closed-loop glucose regulatory system using the 

proposed controller for robustness analysis using SMC method 
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Table I. Parameter Values 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VII. SIMULATION RESULTS (PART 2) 

A. Comparison Between PID Algorithm and Fuzzy Logic 

Technique 

Various therapeutic situations are related to control 

problems. Although the early medical systems appeared at the 

same time as the article by Zadeh (1965), there has been little 

communication between the research fields, but recently this 

has changed due to the developments in computer systems, 

and rapid development of the literature searching methods 

motivated by the internet and the World Wide Web. Many 

systems are being developed which utilize fuzzy logic and 

fuzzy set theory. 

Fuzzy logic control is also an advanced process control, 

which imitates the logic of human thought, and much less 

rigid than the calculations computers generally perform [23]. 

There are three steps for the process of a fuzzy logic 

algorithm: fuzzification, rules, and defuzzification. 

1) Fuzzification: the input of a controller is an exact 

number, for example, the concentration of glucose is 100 

mg/dL. What the fuzzification does is to fuzzify the 

concentration such as low concentration, high concentration, 

and proper concentration. Every exact number has the weight 

of all these low, high, and proper concentrations. 

2) Rules: After defining the fuzzy concept of input, we should 

make rules to decide what the output should be: more drug, a 

little drug, or no drug. For example, we define the following 

rule: if the concentration of glucose is high and the rate of 

glucose is rising, then the drug should be more. 

3) Defuzzification: After the rule, we get the output of fuzzy 

concept, for example, more of 0.8 and little of 0.2. But the 

output which is the object model’s input must be an exact 

number that needs to be defuzzified. By defuzzification, the 

output gets an exact number. Fig. 8 shows configuration of a 

fuzzy system.  

In this paper, it is assumed that there are two different 

inputs of the concentration of glucose and the change rate of 

concentration, and one output of the change rate of insulin 

injection. Fuzzy logic controller is designed according to the 

structure of Mamdani. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It can be seen all required data for fuzzy logic controller in 

Table. II-IV. Fig. 10 shows member functions that they have 

been used for input variables. It is illustrated output member 

function by Fig. 9. It is important that the doctor prescribes 

suitable value of blood glucose concentration level and so 

proposed controller identifies the change rate of concentration 

according to the blood glucose concentration. It has been 

selected input and output member functions as triangular.     
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Fig.7.  Closed-loop glucose regulatory system using the 
proposed controller for robustness analysis using PID method 
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Two types of algorithms are used for a feedback controller 

design that stabilizes the blood glucose concentration of a 

diabetic patient at the desired level in this paper. Now, we can 

compare performance of these methods in the same 

conditions. By assumption of this, we will obtain to Fig. 11 for 

accurate comparison between  PID method and fuzzy logic 

method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this part, The results of the simulations with the fuzzy 

logic control are included. MATLAB is used to simulate the 

nonlinear model of system. The values that have been used in 

implementing the model and its parameters are given in Table 

Membership Functions Range Input Variables 
extreme very high high OK_high normal low very low [40  400] Blood Glucose 

Concentration 

    positive zero negative [-20   20] The Change Rate of 

Blood Glucose 

 

Membership Function Range Output 

Variables 
extreme very high high OK_high normal low very low [0   2] The Change Rate of 

 Insulin Injection 

 

Table II. Input Variables Characteristics 

Table III. Output Variable Characteristics 

The change Rate of Concentration 

zero positive negative 

Blood Glucose 

Concentration 

extreme extreme extreme extreme 
extreme very high very high very high 

high high high high 
OK_high OK_high OK_high OK_high 
normal normal normal normal 

low low very low low 
very low very low very low very low 

 

Table IV. Rules for Fuzzy Logic Controller 
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I. At first, we can indicate to the effect of noise in 

measurement. This can create by unexpected disturbance. 

Unexpected disturbance may happen, for example, a patient 

might eat an apple in nonmeal time, and this should be 

considered but obviously is difficult to deal with by using the 

traditional discrete time methods. Taking this into account, 

simulation experiments, has been shown in Fig. 12. It is 

assumed a white noise by 0.15 amplitude for the error 

measurement in blood glucose evaluation. Fig. 12 shows the 

response of a sick person to the presence of noise in the meal 

disturbance in t=0 and t=2000 Sec.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is easy to see that the performance of proposed controller 

is suitable and it can be stabilize glucose value at the basal 

level in the presence of noise in the meal disturbance. 

B. Robustness Analysis 

To check the robustness of the fuzzy logic control to the 

parameter variations, a set of parameters for three different 

patients have been used. Figure 13 shows the results obtained 

from the simulation. It is obvious that the transient responses 

of the different patients to the same controller are different, 

but in all three cases, the glucose is completely stabilized at 

the basal level in a reasonable time interval. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VIII. SIMULATION RESULTS (PART 3) 

SMC and FLC methods are used for a feedback controller 

design that stabilizes the blood glucose concentration of a 

diabetic patient at the desired level in this paper. Now, we can 

compare performance of these methods in the same 

conditions. By assumption of this, we will obtain to Fig. 14 for 

accurate comparison between  high-order SMC technique and 

fuzzy logic method.  

It is obvious that the glucose is completely stabilized at the 

basal level by using fuzzy logic control faster than  high-order 

SMC technique. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IX. CONCLUSION 

The diabetes management as one of the challenging control 

problems in human regulatory systems has been discussed. 

The treatment of the disease via robust feedback control 

design has been considered. In this research, two types of 

algorithms are used for a feedback controller design that 

stabilizes the blood glucose concentration of a diabetic patient 

at the desired level.  

Higher-order sliding mode control techniques, in specific 

prescribed convergence law, super-twisting control algorithm, 

is used to robustly stabilize the glucose concentration level of 

a diabetic patient in presence of the parameter variations and 

meal disturbance. In fact, This stabilization has been done in 

presence of the external disturbances such as food intake and 

model parametric uncertainties, which affect high-accuracy 

and robustness of the entire system. The robust high-accuracy 

performance of the super-twist controller is checked and 

confirmed by computer simulations. 

Intelligent systems have appeared in many technical areas, 

such as consumer electronics, robotics and industrial control 

systems. Many of these intelligent systems are based on fuzzy 

control strategies which describe complex systems 

mathematical model in terms of linguistic rules. By advent of 

these methods, new techniques have appeared from which 

fuzzy logic been applied extensively in medical systems. This 

paper surveys the utilization of fuzzy logic control. Based on 

this method, fuzzy logic controller is designed to tackle a 
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Fig. 12.  Curve of the response of a sick person to the presence of noise in 

the meal disturbance in blood glucose concentration level  
by fuzzy logic controller 
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control problem of the resulting highly nonlinear plant. It was 

shown also that the proposed schemes can perform well in 

simulation experiments. Finally the obtained results from 

these two methods, are verified based on comparison via 

digital computer simulation by MATLAB. 

The main purpose of the current paper is to employ 

proposed methods and design a robust control in order to 

maintain blood glucose level at the basal value. The 

theoretical results are checked via computer simulations. Also, 

for future studies, the effect of measurement noise is to be 

assessed and attenuated, as well as chattering analysis is to be 

performed. It is obvious that the glucose is completely 

stabilized at the basal level by using fuzzy logic control faster 

than  high-order SMC technique. 

APPENDIX 

G(t) The Glucose Concentration in the Blood Plasma for at Time t 

X(t) The Iinsulin’s Effect on the Net Glucose Disappearance 

I(t) The Insulin Concentration in Plasma at Time t 

Gb The Basal Pre-injection Level of Glucose 

Ib The Basal Pre-injection Level of Insulin 

p1 
The Insulin-independent Rate Constant of Glucose Uptake in 

Muscles and Liver 

p2 The Rate for Decrease in Tissue Glucose Uptake Ability 

p3 
The Insulin-dependent Increase in Glucose Uptake Ability in 

Tissue per unit of Insulin Concentration Above the Basal Level 

n The First-Order Decay Rate for Insulin in Blood 

h 
The Threshold Value of Glucose Above which the Pancreatic β 

Cells Release Insulin 

γ 

The Rate of the Pancreatic β Cells’ Release of Insulin After the 

Glucose Injection with Glucose Concentration Above the 

Threshold 
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