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Summary 

QSAR has done much to enhance our understanding of fundamental processes and phenomena in 

medicinal chemistry and drug design (251). The concept of hydrophobicity and its calculation 

has generated much knowledge and discussion as well as spawned a mini-industry. QSAR has 

refined our thinking on selectivity at the molecular and cellular level. Hydrophobic requirements 

vary considerably between tumor-sensitive cells and resistant ones. It has allowed us to design 

more selectivity into antibacterial agents that bind to dihydrofolate reducates. QSAR studies in 

the pharmacokinetic arena have established different hydrophobic requirements for renal no 

renal clearance, whereas the optimum hydrophobicity for CNS penetration has been determined 

by Hansch et al. (252). QSAR has helped delineate allosteric effects in enzymes such as 

cyclooxygenase, trypsin, and in the well-defined and complex hemoglobin system (253, 254). 

QSAR has matured over the last few decades in terms of the descriptors, models, methods of 

analysis, and choice of substituent and compounds. Embarking on a QSAR project may be a 

daunting and confusing task to a novice. However, there are many excellent reviews and tomes 

(1, 4, 19, 58Ð60) on this subject that can aid in the elucidation of the paradigm. Dealing with 

biological systems is not a simple problem and in attempting to develop a QSAR, one must 

always be cognizant of the biochemistry of the system analyzed and the limitations of the 

approach used.  
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Introduction 

It has been nearly 40 years since the quantitative structure-activity relationship (QSAR) found 

into the practice of agro chemistry, pharmaceutical chemistry, toxicology, and eventually most 

facets of chemistry (1). Its staying power may be attributed to the strength of its initial postulate 

that activity was a function of structure as described by electronic attributes, hydrophobicity, and 

steric properties as well as the rapid and extensive development in methodologies and 

computational techniques that have ensued to delineate and retain the many variables approaches 

in this. The overall goals of QSAR retain their original essence and remain focused on the 

predictive ability of the approach and its receptiveness to mechanistic interpretation. Rigorous 

analysis and of independent variables has led to an expansion in development of molecular and 

atom based descriptors, as well as descriptors derived from quantum chemical calculations and 

spectroscopy (2). The improvement in high-throughput screening procedures allows for rapid 

screening of large numbers of compounds under similar test conditions and thus minimizes the 

risk of combining variable test data from many sources. The formulation of thousands of 

equations using QSAR methodology attests to a validation of its concepts and its utility in the 

elucidation of the mechanism of action of drugs at the molecular level and a more complete 

understanding of physicochemical phenomena such as hydrophobicity. It is now possible not 

only to develop a model for a    system but also to compare models from a biological database and 

to draw analogies with models from a physical organic database (3). This process is dubbed 

model mining and it provides a sophisticated approach to the study of chemical-biological 

interactions. QSAR has clearly matured, although it still has a way to go. The previous review by 

Kubinyi has relevant sections covering portions of this chapter as well as an extensive 

bibliography recommended for a more complete overview (4). 
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Historical Development of QSAR 

More than a century ago, Crum-Brown and Fraser expressed the idea that the physiological 

action of a substance was a function of its chemical composition and constitution (5). A few 

decades later, in 1893, Richet showed that the cytotoxicities of a diverse set of simple organic 

molecules were inversely related to their corresponding water solubility (6). At the turn of the 

20th century, Meyer and Overton independently suggested that the narcotic (depressant) action 

of a group of organic compounds paralleled their olive oil/water partition coefficients (7, 8). In 

1939 Ferguson introduced a thermodynamic generalization to the correlation of depressant action 

with the relative work of Albert, and Bell and Robin established the importance of ionization of 

bases and weak acids in bacteriostatic activity (10Ð12). Meanwhile on the physical organic 

front, great strides were being made in the delineation of substituent effects on organic reactions, 

led by the seminal work of Hammett, which gave rise to the specific culture (13, 14). Taft 

devised a way for separating polar, steric, and resonance effects and introducing the first steric 

parameter, ES (15). The contributions of Hammett and Taft together laid the mechanistic basis 

for the development of the QSAR paradigm by Hansch and Fujita. In 1962 Hansch and Muir 

published their brilliant study on the structure-activity relationships of plant growth regulators 

and their dependency on Hammett constants and hydrophobicity (16). Using the octanol/water 

system, a whole series of partition coefficients were measured, and thus a new hydrophobic scale 

was introduced (17). The parameter p, which is the relative hydrophobicity of a substituent, was 

defined in a manner analogous to the definition of sigma (18). pX 5 log PX 2 log PH (1.1) PX 

and PH represent the partition coefficients of a derivative and the parent molecule, respectively. 

Fujita and Hansch then combined these hydrophobic constants with Hammetts electronic 

constants to yield the linear Hansch equation and its many extended forms (19). Log 1/C 5 as 1 

bp 1 ck (1.2) Hundreds of equations later, the failure of linear equations in cases with extended 

hydrophobicity ranges led to the development of the Hansch parabolic equation (20): The 

delineation of these models led to explosive development in QSAR analysis and related 

approaches. The bilinear model is a parabolic model and, in many cases, it has proved to be 

superior (21). Besides the Hansch approach, other methodologies were also developed to tackle 

structure- activity questions. The Free-Wilson approach addresses structure-activity studies in a 

congener series as described in Equation 1.5 (22). 
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BA is the biological activity, u is the average contribution of the parent molecule, and also the 

contribution of each structural feature; xi denotes the presence Xi 5 1 or absence Xi 5 0 of a 

particular structural fragment. Limitations 

in this approach led to the more sophisticated Fujita-Ban equation that used the logarithm of 

activity, which brought the activity parameter in line with other free energy-related terms (23). 

 

In Equation 1.6, u is defined as the calculated biological activity value of the un-substituted 

parent compound of a particular series. Gi represents the biological activity contribution of the 

substituent, whereas Xi is ascribed with a 

value of one when the substituent is present or zero when it is absent. Variations on this activity- 

based approach have been extended by Klopman et al. (24) and Enslein et al. (25). Topological 

methods have also been used to address the relationships between molecular structure and 

physical/biological activity. The minimum topological difference (MTD) method of Simon and 

the extensive studies on molecular connectivity by Kier and Hall have contributed to the 

development of quantitative structure property/activity relationships (26, 27). Connectivity 

indices based on hydrogen- suppressed molecular structures are rich in information on 

branching, 3-atom fragments, and the degree of substitution, proximity of substituent and length, 

and heteroatom of substituted rings. A method in its embryonic stage of development uses both 

graph bond distances and Euclidean distances among atoms to calculate E-state values for each 

atom in a molecule that is sensitive to conformational structure. Recently, these electro 

topological indices that encode significant structured information on the topological state of 

atoms and fragments as well as their valence electron content have been applied to biological and 

toxicity data (28). Other recent developments in QSAR include approaches such as HQSAR, 

Inverse QSAR, and Binary QSAR (29-32). Improved statistical tools such as partial least square 

(PLS) can handle situations where the number of variables overwhelms the number of molecules 

in a data set, which may have collinear X variables (33).  
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Tools and Techniques of QSAR 

In QSAR analysis, it is imperative that the biological data be both accurate and precise to 

develop a meaningful model. It must be realized that any resulting QSAR model that is 

developed is only as valid statistically as the data that led to its development. The equilibrium 

constants and rate constants that are used extensively in physical organic chemistry and 

medicinal chemistry are related to free energy values DG. Thus for use in QSAR, standard 

biological equilibrium constants such as Ki or Km should be used in QSAR studies. Likewise 

only standard rate constants should be deemed appropriate for a QSAR analysis. Percentage 

activities (e.g., % inhibition of growth at certain concentrations) are not appropriate biological 

endpoints because of the nonlinear characteristic of dose-response relationships. These types of 

endpoints may be transformed to equieffective molar doses. Only equilibrium and rate constants 

pass muster in terms of the free-energy relationships or on QSAR studies. Biological data are 

usually expressed on a logarithmic scale because of the linear relationship between response and 

log dose in the mid region of the log dose-response curve. Inverse logarithms for activity (log 

1/C) are used so that higher values are obtained for more effective analogs. Various types of 

biological data have been used in QSAR analysis. A few common endpoints are outlined in 

Table 1.2. Biological data should pertain to an aspect of biological/biochemical function that can 

be measured. The events could be occurring in enzymes, isolated or bound receptors, in cellular 

systems, or whole animals. Because there is considerable variation in biological responses, test 

samples should be run in duplicate or preferably triplicate, except in whole animal studies where 

assay conditions (e.g.  plasma concentrations of a drug) preclude such measurements. 

 

It is also important to design a set of molecules that will yield a range of values in terms of 

biological activities. It is understandable that most medicinal chemists are reluctant to synthesize 

molecules with poor activity, even though these data points are important in developing a 

meaningful QSAR. Generally, the larger the range (.2 log units) in activity, the easier it is to 

generate a predictive QSAR. This kind of equation is more forgiving in terms of errors of 

measurement. A narrow range in biological activity is less forgiving in terms of accuracy of data. 

Another factor that merits consideration is the time structure. Should a particular reading be 

taken after 48 or 72 h? Knowledge of cell cycles in cellular systems or biorhythms in animals 

would be advantageous. Each single step of drug transport, binding, and metabolism involves 
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some form of partitioning between an aqueous compartment and a non-aqueous phase, which 

could be a membrane, serum protein, receptor, or enzyme. In the case of isolated receptors, the 

endpoint is clear-cut and the critical step is evident. But in more complex systems, such as 

cellular systems or whole animals, many localized steps could be involved in the random-walk 

process and the eventual interaction with a target. Usually the observed biological activity is the 

slow step or the rate-determining step. To determine a biological response (e.g., IC50), a dose-

response curve is established. 

Usually six to eight concentrations are tested to yield percentages of activity or inhibition 

between 20 and 80%, the linear portion of the curve. Using the curves, the dose responsible for 

an established effect can easily be determined. This procedure is meaningful if, at the time the 

response is measured, the system is at equilibrium, or at least under steady-state conditions. 

Other approaches have been used to apply additively the concept and ascertain the binding 

energy contributions of various substituent (R) groups. Fersht et al. have measured the binding 

energies of various alkyl groups to aminoacyl-tRNA synthetases (54). Thus the DG values for 

methyl, ethyl, isopropyl, and substituent were determined to be 3.2, 6.5, 9.6, and 5.4 kcal/mol, 

respectively. An alternative, generalized approach to determining the energies of various drug-

receptor interactions was developed by Andrews et al. (55), who statistically examined the 

interactions of a diverse set of molecules in aqueous solution. Using Equation 1.9, a relationship 

was established between DG and EX (intrinsic binding energy), EDOF (energy of average 

entropy loss), and the DSr,t (energy of rotational and translational entropy loss). 

  

EX denotes the sum of the intrinsic binding energy of each functional group of which �x are 

present in each drug in the set. Using Equation 1.9, the average binding energies for various 

functional groups were calculated. These energies followed a particular trend with charged 

groups showing stronger interactions and non-polar entities, such as sp2, sp3 carbons, 

contributing very little. The applicability of this approach to specific drug-receptor interactions 

remains to be seen. 
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Parameters Used In QSAR 

Electronic Parameters  

Parameters are of critical importance in determining the types of intermolecular forces that drug-

receptor interaction. The three major types of parameters that were initially suggested and still 

hold sway are electronic, hydrophobic, and steric in nature (20, 75). Extensive studies using 

electronic parameters reveal that electronic attributes of molecules are intimately related to their 

chemical relativities and biological activities. A search of a computerized QSAR database 

reveals the following: the common Hammett constants (s, s1, s2) account for 7000/8500 

equations in the Physical organic chemistry (PHYS) database and nearly 1600/8000 in the 

Biology (BIO) database, whereas quantum chemical indices such as HOMO, LUMO, BDE, and 

polarizability appear in 100 equations in the BIO database (76). The extent to which a given 

reaction responds to electronic perturbation constitutes a measure of the electronic demands of 

that reaction, which is determined by its mechanism. The introduction of substituent groups into 

the framework and the subsequent alteration of reaction rates helps delineate the overall 

mechanism of reaction. Early work examining the electronic role of substituent’s on rate 

constants was first tackled by Burckhardt and established by Hammett (13, 14, 77, 78). Hammett 

employed, as a model reaction, the ionization in water of substituted benzoic acids and 

determined their equilibrium constants Ka. See Equation 1.28. This led to an operational 

definition of s, the substituent constant. It is a measure of the size of the electronic effect for a 

given substituent and represents a measure of electronic charge distribution in the benzene 

nucleus. 
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Electron-withdrawing substituents are thus characterized by positive values, whereas electron- 

donating ones have negative values. In an extension of this approach, the ionization of 

substituted phenyl acetic acids was measured. 

 

The effect of the 4-Cl substituent on the ionization of 4-Cl phenyl acetic acid (PA) was found to 

be proportional to its effect on the ionization of 4-Cl benzoic acid (BA). 

 

ƍ (rho) is defined as a proportionality or reaction constant, which is a measure of the 

susceptibility of a reaction to substituent effects. 
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Hydrophobicity Parameters 

More than a hundred years ago, Meyer and Overton made their seminal discovery on the 

correlation between oil/water partition coefficients and the narcotic potencies of small organic 

molecules (7, 8). Ferguson extended this analysis by placing the relationship between depressant 

action and hydrophobicity in a thermodynamic context; the relative saturation of the depressant 

in the biophase was a critical determinant of its narcotic potency (9). At this time, the success of 

the Hammett equation began to permeate structure-activity studies and hydrophobicity as a 

determinant was relegated to the background. In a landmark study, Hansch and his colleagues 

devised and used a multiparameter approach that included both electronic and hydrophobic 

terms, to establish a QSAR for a series of plant growth regulators (16). This study laid the basis 

for the development of the QSAR paradigm and also established the importance of lipophilicity 

in biosystems. Over the last 40 years, no other parameter used in QSAR has generated more 

interest, excitement, and controversy than hydrophobicity (96). Hydrophobic interactions are of 

critical importance in many areas of chemistry. These include enzyme- ligand interactions, the 

assembly of lipids in biomembranes, aggregation of surfactants, coagulation, and detergency 

(97Ð100). The integrity of biomembranes and the tertiary structure of proteins in solution are 

determined by polar-type interactions. Molecular recognition depends strongly on hydrophobic 

interactions between ligands and receptors. Excellent treatises on this subject have been written 

by Taylor (101) and Blokzijl and Engerts (51). Despite extensive usage of the term hydrophobic 

bond, it is well known that there is no strong attractive force between polar molecules (102). 

Frank and Evans were the first to apply a thermodynamic treatment to the salvation of polar 

molecules in water at room temperature (103). Their iceberg model suggested that a large 

entropic loss ensued after the dissolution of a polar compounds and the increased structure of 

water molecules in the surrounding a polar solute. The quantization of this model led to the 

development of the ßickering cluster model of N. Scheraga, which emphasized the formation of 

hydrogen bonds in liquid water Hydrophobicity of solutes can readily be determined by 

measuring partition coefficients designated as P. Partition coefficients deal with neutral species, 

whereas distribution ratios incorporate concentrations of charged and/or polymeric species as 
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well. By convention, P is defined as the ratio of concentration of the solute in octanol to its 

concentration in water. 

 

 

Steric Parameters 

The quantization of steric effects is complex at best and challenging in all other situations, 

particularly at the molecular level. An added level of confusion comes into play when attempts 

are made to delineate size and shape. Nevertheless, steric are of overwhelming importance in 

ligand-receptor interactions as well as in transport phenomena in cellular systems. The steric 

parameter to be used in QSAR studies was TaftÕs ES constant (157). ES is defined as  

 

Where kX and kH represent the rates of acid hydrolysis of esters, XCH2COOR and CH3COOR, 

respectively. To correct for hyper conjugation in the hydrogen of the acetate moiety, Hancock 

devised a correction on ES such That the failure of the MR descriptor to adequately address 

three-dimensional shape issues led to Overlook development of STERIMOL parameters (162), 

which the steric constraints of a given substituent along several fixed axes. Five parameters were 

deemed necessary to definite shape: L, B1, B2, B3, and B4. L represents the length of a 

substituent along the axis of a bond between the parent molecule and the substituent; B1 to B4 

represent four different width parameters. However, the high degree of co linearity between B1, 

B2, and B3 and the large number of training set members needed to establish the statistical 

validity of this group of parameters led to their demise in QSAR studies. Overlook subsequently 

established the adequacy of just three parameters for QSAR analysis: a slightly modified length 

L, a minimum width B1, and a maximum width B5 that is orthogonal to L (163). The use of these 

insightful parameters has done much to enhance correlations with biological activities. Recent 

analysis in our laboratory has established that in many cases, B1 alone is superior to Tafton ES 

and a combination of B1 and B5 can adequately replace ES (164). Molecular weight (MW) terms 

have also been used as descriptors, particularly in cellular systems, or in distribution/transport 

studies where diffusion is the mode of operation. According to the Einstein-Sutherland equation, 

molecular weight affects the diffusion rate. The Log MW term has been used extensively in 
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some studies (159-161) and an example of such usage is given below. In correlating permeability 

(Perm) of non electrolytes through cells, Lien et al. obtained the following QSAR (168): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           PARAMETERS   SYMBOL 

Hydrophobic parameters  

a) Partition coefficient 

 b) PI substituent constant  

c) Rm chromatographic parameter  

d) Solubility  

e) elution time in HPTLC  

 

Log P.(log P)2 

  

log Rm  

δ 

Log K 
Electronic parameter  

experimental parameters  

b) ionization constant  

c) sigma substituent constant 

d) spectroscopic chemical shift  

e) resonance effect  

f) field effect  

g) ionization potential  

 

 

pKa 

σ2,σ 

∆ Fr, ppm  

F 

I 

E 

Theoretical quantum mechanical indices  

a) Automic charge densities  

b) Striper delocalizabitily  

c) Energy of molecular orbit  

 

 

QT 

pKa  

ELEMO 

 

Steric parameters  

a) Taft’s steric substituent constant  

b) Vander walls radii  

c) Interatomic distances  

 

Es 

γ 

B,L 
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Quantitative Models 

Linear Models 

The correlation of biological activity with physicochemical properties is often termed an extra 

thermodynamic relationship. Because it follows in the line of Hammett and Taft equations that 

correlate thermodynamic and related parameters, it is appropriately labeled. The Hammett 

equation represents relationships between the logarithms of rate or equilibrium constants and 

substituent constants. The linearity of many of these relationships led to their designation as 

linear free energy relationships. The Hansch approach represents an extension of the Hammett 

equation from physical organic systems to a biological milieu. It should be noted that the 

simplicity of the approach belies the tremendous complexity of the intermolecular interactions at 

play in the overall biological response. Biological systems are a complex mix of heterogeneous 

phases. Drug molecules usually traverse many of these phases to get from the site of 

administration to the eventual site of action. Along this random-walk process, they perturb many 

other cellular components such as organelles, lipids, proteins, and so forth. These interactions are 

complex and vastly different from organic reactions in test tubes, even though the eventual 

interaction with a receptor may be chemical or physicochemical in nature. Thus, depending on 

the biological system involved isolated receptor, cell, or whole animal one expects the response 

to be multifactorial and complex. The overall process, particularly in vitro or in vivo, studies a 

mix of equilibrium and rate processes a situation that gives easy separation and delineation. 

  

C represents the equipotent concentration, k and m are constants for a particular system, and A is 

a physicochemical constant representative of phase distribution equilibria such as aqueous 

solubility, oil/water partition coefficient, and vapor pressure. In examining a large and diverse 

number of biological systems, Hansch and coworkers depend a relationship (Equation 1.62) that 

expressed biological activity as a function of physicochemical parameters (e.g., partition 

coefficients of organic molecules) (19).  
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�onlinear Models 

Extensive studies on development of linear models led Hansch and coworkers to note that a 

breakdown in the linear relationship occurred when a greater range in hydrophobicity was 

assessed with particular emphasis placed on test molecules at extreme ends of the hydrophobicity 

range. Thus, Hansch et al. suggested that the compounds could be involved in a Òrandom-walkÓ 

process: low hydrophobic molecules had a tendency to remain in the aqueous compartment, 

whereas highly hydrophobic analogs sequestered in the lipoid phase that they encountered. This 

led to the formulation of a parabolic equation, relating biological activity and hydrophobicity 

(187).  

 

In the random-walk process, the compounds partition in and out of various compartments and 

interact with myriad biological components in the process. To deal with this conundrum, Hansch 

proposed a general, comprehensive equation for QSAR 1.71 (188).  

 

The optimum value of log P for a given system is log PO and it is highly influenced by the 

number of hydrophobic barriers a drug encounters in its walk to its site of action. Hansch and 

Clayton formulated the following parabolic model to elucidate the narcotic action of alcohols on 

tadpoles (189).  

 

Other QSAR Approaches 

The similarity in approaches of Hansch analysis and Free-Wilson analysis allows them to be 

used within the same framework. This is based on their theoretical consistency and the numerical 

equivalencies of activity contributions. This development has been called the mixed approach 

and can be represented by the following equation:   

 

The term ai denotes the contribution for each substituent, whereas any physicochemical property 

of a substituent Xj. For a thorough review of the relationship between Hansch and Free-Wilson 
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analysis. A recent study of the P-glycoprotein inhibitory activity of 48 propafenone-type 

modulators of multidrug resistance, using a combined Hansch/Free-Wilson approach was 

deemed to have higher predictive ability than that of a stand-alone Free-Wilson analysis (201). 

Molar refractivity, which has high co linearity with molecular weight, was a significant 

determinant of modulating ability. It is of interest to note that molecular weight has been shown 

to be an omnipresent parameter in cross-resistance probes in multidrug-resistance phenomena 

(167).  

 

A) Hansch’s Approach (Extra thermodynamic or linear free energy relationship) 

Hansch analysis is the investigation of the quantitative relationship  between the biological 

activity of a series of compounds and their physicochemical substituent's or global parameters 

representing hydrophobic, electronic, steric & other effects using multiple regression correlation 

methodology. According to Hansch analysis, 

Biological activity = a(Hydrophobic parameter) + b(Electronic parameter 

+c(Steric descriptor) + d(Other descriptor) + e 

Where, 

a,b,c,d & e are constants determined by least square regression analysis (i.e. Hansch analysis). If 

the hydrophobicity values are limited to a small range then the equation will be linear as follows, 

Log 1/c =K1logP + K2σ +K3Es +K4 

If the P values are spread over a large, range then the equation will be parabolic i.e. 

Log1/c = K1(LogP)² K2LogP + K3σ +K4Es +K5 E 

 

Applications of Hansch analysis: 

1. in Pharmacokinetics: 

 Pharmacokinetics describes the time dependence of ‘transport and distribution of drugs in 

different compartment of biological system’. eg. rate constant at blood & tissue level absorption, 

metabolism & elimination rate constants. 

          According to Hansch rule ‘to get compound into the CNS, design it in such a way that 

LogP is near to 2’ and ‘to keep the compound out of the CNS & to avoid possible unwanted CNS 

side-effects such as drowsiness, design it in such a way that LogP is not near to 2’ 
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  eg. Cardio-tonic agent, Sulmazole & 2,4-dimethoxy analogue of Sulmazole. 

                

 

 

Stru.:  2,4-dimethoxy analogue of Sulmazole( LogP = 2.59 ) 

A CNS side effect described as bizarre (seeing bright vision) was reported in the analogue of 

Sulmazole having Log P=2.59 

2. Activity of drugs:  

Bell & Roblin observe QSAR of sulfa drugs that a logarithmic plot of the bacteriostatic activities 

of some 40 sulfanilamide against parabolic equation was formulated. 

       Log 1/c = 2.103(±29) PKa -0.155(±0.02) PKa²-1.351(±0.96) 

N=39;   r=0.939   ;s =0.321 

              Where= Minimum inhibitory concentration. 

                          N= Number of compounds utilized. 

                           r= Correlation coefficient. 

They considered that, the more negative the sulfomyl (SO2NH)group of sulfanilamide 

derivative, the more closely they will resemble the P.aminobenzoate anion with which 

sulfanilamide compete for the dihydrofolate synthetase enzyme. Being affected by negative 

charge on the adjacent amide nitrogen the   sulfomyl group of sulfanilamide in the ionized form 

is much negative than in non-ionized form. 

 

 

Fig: Shows relationship between bacteriostatic activity & acidity of N1 substituted sulfanilamide. 
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3. In vitro determination of activity:  

Hansch analysis can be applicable: 

A. In determination of potency of new analogue for muscarinic receptor antagonist. 

B. For studying protein binding affinity of thyroid hormone. 

C. in QSAR studies of receptor agonist & antagonist of benzodiazepine receptor     

&estrogen receptor. 

D. For in-vitro study of nonspecific, hemolytic, antibacterial & antifungal activities. 

 4. Enzyme inhibition:    

Hansch analysis can be applicable in studying enzyme inhibition by analysis of enzyme 

inhibitors especially in combination with protein 3D structures & molecular graphics. 

 

B) Free Wilson Analysis: 

This method is preferred when nothing is known about the mode of action or when the 

physicochemical properties of the substituents used are unknown. 

This method is based on the assumption that the introduction of a particular substituent at a 

particular position always leads to quantitatively similar effect on biological potency of the 

molecules expressed by equation: 

Log BA = Contribution of un-substituted parent comd. + Contribution of     

                                       corresponding substituent. 

                                                   = µ + ε aij  

Where, 

          µ = the overall biological activity. 

          i = the no. of the position at which substitution occurs. 

          j = the no. of the substituent at that position. 

The approach can be applied to a congeneric series having a common skeleton. Various 

derivatives must have been prepared by using different substituent at the same distinct positions 

of the parent skeleton. The substituents have to contribute to the biological activity additively at 

the same position. When choosing derivatives for the synthesis care has to be taken that every 

substituent appears at least twice at the same position. It is stated that the no. of derivatives for 

the solution of regression analysis must be at least ten, equal to the no. of increments. 
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Applications of QSAR 

Over the last 40 years, the glut in scientific information has resulted in the development of 

thousands of equations pertaining to structure-activity relationships in biological systems. In its 

original definition, the Hansch equation was depend to model drug-receptor interactions 

involving electronic, steric, and hydrophobic contributions. Nonlinear relationships helped this 

approach in cellular systems and organisms where pharmacokinetic constraints had to be 

considered and tackled. They have also found increased utility in addressing the complex QSAR 

of some receptor-ligand interactions. In many cases the Kubinyi bilinear model has provided a 

sophisticated approach to delineation of steric effects in such interactions. Examples of ligand-

receptor interactions will be drawn from receptors such as the much-studied dihydrofolate 

reeducates (DHFR), a-chymotrypsin and 5areductase (202-204). 

 

 

 

Isolated Receptor Interactions 

The critical role of DHFR in protein, purine, and pyrimidine synthesis; the availability of crystal 

structures of binary and ternary complexes of the enzyme; and the advent of molecular graphics 

combined to make attractive target for well-designed heterocyclic ligands generally 

incorporating a 2,4-diamino-1,-3-diazapharmacophore (205). The earliest study focused on the 

inhibition of DHFR by 4, 6-diamino-1, 2-dihydro- 2, 2-dimethyl-1R-s-triazines. 

 

Interactions at the Cellular Level 

QSAR analysis of studies at the cellular level allows us to get a handle on the physicochemical 

parameters critical to pharmacokinetics processes, mostly transport. Cell culture systems offer an 

ideal way to determine the optimum hydrophobicity of a system that is more complex than an 

isolated receptor. Extensive QSAR have been developed on the toxicity of 3-X-triazines to many 

mammalian and bacterial cell lines (202, 209). A comparison of the cytotoxicities of these 

analogs vs. sensitive murine leukemia cells (L1210/S) and methotrexate- resistant murine 

leukemia cells (L1210/R) reveals some startling differences.  
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Comparative QSAR 

There are literally dozens of databases containing information about chemical structures, 

Synthetic methods and reaction mechanisms. The C-QSAR database is a database for QSAR 

models (164, 234). It was designed to organize QSAR data on physical (PHYS) organic reactions 

as well as chemical-biological (BIO) interactions, in numerical terms, to bring cohesion and 

understanding to mechanisms of chemical-biodynamic. The two databases are organized on a 

similar format, with the emphasis on reaction types in the PHYS database. The entries in the BIO 

database are sequestered into six main groups: macromolecules enzymes, organelles, single-cell 

organisms, organs/tissues, and multicellular organisms (e.g., insects). The combined databases or 

the separate PHYS or BIO databases can be searched independently by a string search or 

searching using the SMILES notation. A SMILES search can be approached in three ways: one 

can identify every QSAR that contains a specific molecule, one can use a MERLIN search that 

locates all derivatives of a given structure, or one can search on single or multiple parameters.  

 

Progress in QSAR 

The last four decades have seen major changes in the QSAR paradigm. In tandem with 

developments in molecular modeling and X-ray crystallography, it has impacted drug design and 

development in many ways. It has also spawned 3D QSAR approaches that are routinely used in 

computer-assisted molecular design. In terms of ligand design, it shares center stage with other 

approaches such as structure- based ligand design and other rational drug design approaches 

including docking methods and genetic algorithms (243). Success stories in QSAR have been 

recently reviewed (244, 245). Bioactive compounds have emerged in agro chemistry, pesticide 

chemistry, and medicinal chemistry. Bifenthrin, a pesticide, was the product of a design strategy 

that used cluster analysis (244) (Fig. 1.7). Guided by QSAR analysis, the chemists at Kyorin 

Pharmaceutical Company designed and developed Norflooxacin, a 6-ßuoro quinolone, which 

heralded the arrival of a new class of antibacterial agents (246) (Fig. 1.7). Two azoles-containing 

fungicides, metconazole (Fig. 1.8) and ipconazole were launched in 1994 in France and Japan, 

respectively (247). Lomerizine, a 4-F-benzhydryl-4- (2, 3, 4-trimethoxy benzyl) piperazine, was 

introduced into the market in 1999 after extensive design strategies using QSAR (248) (Fig. 1.8). 
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Flobufen, an anti-inflammatory agent was designed by Kuchar et al. as a long acting agent 

without the usual gastric toxicity  

 

 

(249) (Fig. 1.8). It is currently in clinical trial. Other examples of the commercial utility of 

QSAR include the development of metamitron and bromobutide (250). In most of these 

examples, QSAR was used in combination with other rational drug-design strategies, which is a 

useful and generally fruitful approach. In addition to these commercial successes, the QSAR 

paradigm has steadily evolved into a science. It is empirical in nature and it seeks to bring 

coherence and rigor to the QSAR models that are developed. By comparing models one is able to 

more fully comprehend scientific phenomena with a global perspective; trends in patterns of 

reactivity or biological activity become self-evident. 

 

 

Structure-Activity Relationship for Anti-inflammatory Effect of Luteolin and its Derived 

Glycosides 

Flavonoids are common secondary metabolites in the plant kingdom. Over 4000 flavonoids have 

been isolated from plants and structurally identified (Harborne, 1994). They play a significant 

role in plant metabolism and are considered relatively non-toxic bio-active substances. It is 

known that flavonoids differing by the type and numbers of substitution patterns show anti-

inflammatory and free radical scavenging activities (Lewis, 1989; Moroney et al., 1988; Arora et 

al., 1998; Bors and Saran, 1987). Flavonoids have been shown to inhibit cyclooxygenase, 

lipoxygenase, microsomal monooxygenase, glutathione S-transferase, mitochondrial 
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succinoxidase and NADH oxidase, all involved in reactive oxygen species generation (Pieta, 

2000; Robak and Gryglewski, 1996; Chang and Hsu, 1992; Hirano et al., 2004). Thromboxane 

B2 (TXB2), a product of arachidonic acid metabolism, has attracted a great deal of attention as a 

potential pro-inflammatory mediator in diseases such as liver cirrhosis, systemic lupus 

erythematosis and thrombosis, while leukotriene B4 (LTB4) in the case of asthma, psoriasis, 

gout and inflammatory bowel diseases. The release of abundant amounts of free radicals in the 

human body also because the initiation of various diseases associated with inflammation. Thus, 

the determination of substances with active anti-inflammatory activity from natural sources 

might be a basis for new effective drugs. The present study assessed the hydrogen peroxide 

scavenging activity and the inhibitory effect on the enzymes for TXB2 and LTB4 of the 

arachidonate pathway synthesis of structurally related flavones such as luteolin, and its derived 

glycosides luteolin-7-O-β –D-Glycoside, luteolin-7-O-β -D-primeveroside , luteolin-6-C-β-D-

glucoside and luteolin-6-O-β -D-glycosides which previously were isolated and identified from 

the different kinds of medicinal plant sources. The structure identification of these five 

compounds has been described previously. 

 

Conclusion 

QSAR - It is a mathematical calculation for predicting the new drug. Drug design a continues 

process of discovering a new regimen. Various parameters, models have been employed to 

search for new drug having least toxicity and high test efficacy QSAR is guidance for knowing 

its three dimension role in the biological system. Hansch analysis, amend constant, free Wilson 

model are the best parameters for   QSAR both electronic, steric factor have been considered for   

QSAR research need to know guidelines for QSAR in the regard we attempted to review the 

QSAR and its application. 
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