Current Trends in Anticonvulsant 4(3H)-quinazolinone: A Review

Dinesh Arora, Hitesh Kumar*, Dipan Malhotra, Manav Malhotra

*Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ferozepur Road,
Moga 142 001, India

Summary
A variety of antiepileptic drugs (AEDs) are available today, but still there is a need for new drugs. The goal of epilepsy management is complete control of seizures with little or no adverse effects. Although epilepsy can be idiopathic, it is estimated that up to 50% of all epilepsy cases are initiated by neurological disturbances and are called acquired epilepsy (AE)\(^1\). AE develops in 3 phases: the injury (central nervous system\(^2\) [CNS] insult), epileptogenesis\(^3\) (latency), and the chronic epileptic (spontaneous recurrent seizure) phases. Status epilepticus (SE), stroke, and traumatic brain injury (TBI) are 3 major examples of common brain injuries that can lead to the development of AE\(^5\). The signalling cascades associated with the development of epileptogenesis and maintenance of the chronic epileptic state are required to understand the development of AE and for developing novel interventional target to prevent or even cure AE\(^7\). AMPA glutamate receptors (AMPARs) have structural features that allow for multiple sites to which ligands can act to modulate receptor functions\(^24\). Other non-competitive AMPAR antagonists containing quinazolin-4-one skeleton were developed by Pfizer research group\(^33,34\). Compound CP-465,022 (+(aS)-(2-chlorophenyl) -2- [(E) - 2- [6 (diethylaminomethyl)pyridin-2-yl]-vinyl]-6-fluoroquinazolin-4(3H)-one (9) consisted of three features: (1) the quinazolin-4-one ring, with a small C-6 substituent, (2) the orthogonal N-3 phenyl ring containing a single ortho substituent, and (3) the aryl ring attached to C-2 through a two-atom spacer showed anticonvulsant efficacy when tested against pentylenetetrazole and AMPA induced seizures (4.0 mg/Kgsc)\(^36,37\)

*For Correspondence
Hitesh Kumar
Research Scholar
Department of Pharmaceutical Sciences,
ISF College of Pharmacy, Ferozepur Road,
Moga 142 001, India
E.mail: hitesh.ahuja05@rediffmail.com
Introduction

Epilepsy is the most common neurological disorder after stroke and is characterized by seizure of various types which result from episodic neuronal discharges\(^1,2\). Nearly, 1-2% of the world population is affected by epilepsy\(^3\). It shows an estimated 7 million people in India and 50 million worldwide, approximately 40% of them are women\(^4\). A minority of patients (20-30%) may develop chronic epilepsy, and in such cases, treatment is more complicated. There is an increased mortality in people with epilepsy and most studies have given overall standardized mortality ratios between two & three times higher than that of the general population\(^5\). Although epilepsy can be idiopathic, it is estimated that up to 50% of all epilepsy cases are initiated by neurological disturbances and are called acquired epilepsy (AE). AE develops in 3 phases\(^1\): the injury (central nervous system\(^2\) [CNS] insult), epileptogenesis (latency), and the chronic epileptic\(^3\) (spontaneous recurrent seizure) phases. Status epilepticus (SE), stroke, and traumatic brain injury (TBI) are 3 major examples of common brain injuries that can lead to the development of AE\(^6\).

In India, the prevalence rate of epilepsy varies from 1,710 to 9,780 cases per million\(^7\). Nearly, 95% of clinically approved drugs for epilepsy treatment were approved prior to 1985, and they can provide satisfactory seizure control for 60–70% of patients. These drugs, however, also cause notable adverse side effects such as drowsiness, ataxia, gastrointestinal disturbance, hepatoxotoxicity and megaloblastic anaemia and even life threatening conditions\(^8-10\). Most antiepileptic drugs are associated with adverse effects, such as sedation, ataxia and weight loss (e.g. topiramate) or weight gain (e.g. valproate, tiagabine, and vigabatrin). Rare adverse effects can be life threatening such as rashes leading to Stevens-Johnson syndrome (e.g. lamotrigine) or aplastic anaemia (e.g. felbamate)\(^11\). A seizure is a paroxysmal event due to abnormal, excessive, hypersynchronous neuronal discharges in central nervous system (CNS)\(^13\). These are thought to arise from the cerebral cortex, major part of the cerebrum (largest part of the brain divided into left and right hemispheres) which control wide array of behaviours\(^12,13\). The different kinds of epilepsies consider from different neurophysiologic abnormalities\(^14\). Seizures are fundamentally divided into two major groups: partial and generalized. In partial (focal, local) seizures the attacks have a localized onset in the brain, usually in a portion of one hemisphere, while generalized seizures are those in which evidence for a localized onset is lacking. It may also generalize throughout the brain via cortical and sub-cortical routes, including colossal and thalamocortical pathways. The area from which the abnormal discharge originates is known as the epileptic focus. An EEG recording carried out during one of these abnormal discharges may show a variety of atypical signs, depending on which area of the brain is involved, its progression and how the discharging areas project to the superficial cortex for understanding the cure of epilepsy\(^15\).

Gamma-amino butyric acid (GABA) is the inhibitory neurotransmitter in the vertebrate central nervous system. There are two classes of GABA receptors: GABA\(_A\) and GABA\(_B\). GABA\(_A\) receptors are ligand-gated ion channels (also known as ionotropic receptors), whereas GABA\(_B\) receptors are G protein-coupled receptors (also known as metabotropic receptors). Glutamate receptors are responsible for the glutamate-mediated post-synaptic excitation of neural cells, and are important for neural communication, memory formation, learning, and regulation. Inhibitory neurotransmitter GABA or an increase in excitatory neurotransmitters such as glutamate would promote abnormal neuronal activity. A relative deficiency of excitatory glutamate, a amino acid neurotransmitter in the CNS mainly involved in epilepsy whereas \(\gamma\)-amino butyric acid is the major inhibitory amino acid neurotransmitter in central nervous system\(^17-19\).

Mechanism of Action: Main proposed mechanism of newer antiepileptic drug in the inhibitory, GABAergic and the excitatory glutamatergic synapse as shown in Figure 1.
Figure 1: New generation of antiepileptic drugs.

The black spots are reuptake protein for GABA and glutamate. The grey receptor metabotropic receptors, GABAB for GABA and mGluR (metabotropic glutaminergic receptor), for glutamate. SV2a: synaptic vesicle protein 2a, the specific binding site for levetiracetam, VGCC and VGSC are Ca\(^{2+}\) and Na\(^{+}\) channels. Glutamatergic neurotransmission involves ionotropic and metabotropic receptors (iGluRs and mGluR) that’s are activated.\(^{20}\)

A new generation of AEDs are having improved efficacy and tolerability are shown in Table 1

<table>
<thead>
<tr>
<th>New Compound</th>
<th>Parent AED</th>
<th>Improvement</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brivaracetam</td>
<td>Levetiracetam</td>
<td>Efficacy</td>
<td>More potent binding to SV2A</td>
</tr>
<tr>
<td>Oxcarbazepine Eslicarzepine</td>
<td>Carbamazepine</td>
<td>Tolerability</td>
<td>Improved pharmacokinetic properties</td>
</tr>
<tr>
<td>Fluorofelbamate</td>
<td>Felbamate</td>
<td>Tolerability</td>
<td>Non-toxic metabolite</td>
</tr>
<tr>
<td>JZP-4</td>
<td>Lamotrigine</td>
<td>Efficacy</td>
<td>Improved pharmacokinetic properties</td>
</tr>
<tr>
<td>Pregabalin</td>
<td>Gabapentin</td>
<td>Efficacy</td>
<td>Equally potency to gabapentin</td>
</tr>
<tr>
<td>Valproate, valnoctamide,</td>
<td>Valproate</td>
<td>Tolerability</td>
<td>Less toxic metabolites, less teratogenic potential</td>
</tr>
<tr>
<td>Propylisopropyl acetamide (MTMCD),</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDS-1776, Tetramethylcycloproancarbonyl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>urea (TMCU)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The iGluRs are ligand gated ion channels which are further subdivided into three classes based on their affinity for specific agonists: the N-methyl-D-aspartic acid (NMDA), the kainic acid (KA) and \(\alpha\)-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subtypes allow for sodium, potassium and calcium flux upon glutamate binding. (Figure 2) iGluR agonists.
AMPA receptors (AMPARs) are expressed in the key epileptogenic regions of the brain including the cerebral cortex, the thalamus, the amygdala, the hippocampus, and even the basal ganglia which receive inputs from these regions\(^21,22\). The potential of AMPA receptor antagonists to attenuate epileptic seizures has not yet been fully investigated. At present, talampanel is the only AMPA receptor antagonist in phase II clinical trial use for the amelioration of epileptic seizures. AMPA glutamate receptors (AMPARs) have structural features that allow for multiple sites to which ligands can act to modulate receptor functions\(^23\). AMPARs are tetramers built from closely related subunits, called both GluR 1-4 and GluR A-D, assembled from homo or heteromeric complexes surrounding a central cation conducting pore mediating fast excitatory postsynaptic potentials by the flux of \(\text{Na}^+\) and \(\text{Ca}^{2+}\) ions\(^24,25\). Release of glutamate from the presynaptic neuron and its binding to AMPARs of the postsynaptic neuron leads to cations influx into the cells, but also causes the receptor to desensitize thus prevention against excitotoxic processes. Each of GluR1-4 subunit can exist as two forms, flip and flop, due to variable gene splicing and consists of a long extracellular amino terminus, jointed to three transmembrane spanning domains (TM1, TM3 and TM4), a membrane imbedded re-entry loop (M2) that connects TM1 and TM3, and a short intracellular C-terminus as showed in (Figure 4) for GluR2. Two discontinuous extracellular domains (S1, S2) contain the glutamate binding site, responsible for binding the neurotransmitter and the competitive agonists/antagonists\(^26\).

Figure 2: iGluR agonists.

Figure 3: GluR2 subunit of AMPA receptor\(^27\).
Chemistry:

The first non-competitive AMPA antagonist was 1- (4-aminophenyl)-4-methyl-7,8-methyleneoxy-5H-2,3-benzodiazepine (GYKI 52466, 1), discovered in 1989 and used as template to develop novel more potent and less toxic AMPAR modulator. Stereoselectivity in AMPA receptor is also confirmed by the higher activity of R-enantiomers such as (-) GYKI 53733 (2, also named LY300164 or talampanel) and (-) GYKI 53784 (3).

Other non-competitive AMPAR antagonists containing quinazolin-4-one skeleton were developed by Pfizer research group (Figure 5). Compound CP-465,022, (+)-(aS)- (2-chlorophenyl)-2-[(E)-2-[6(diethylamino-methyl)pyridin-2-yl]-vinyl]-6-fluoroquina zolin-4(3H)-one (4) showed anticonvulsant efficacy when tested against pentylentetrazole and AMPA induced seizures (4.0 mg/kg sc). The 2-[N-(4 chlorophenyl)-N-methylamino]-4H-pyrido[3,2-e]-1,3-thiazin-4-one (6, YM928) exerts significant anticonvulsant effects in various seizures models (e.g. MES, ED50 = 4.0-7.4 mg/kg p.o. both in mice and rats), it is orally active. Compound (6) demonstrated to prevent audiogenic seizures in DBA/2 mice after oral administration at 3mg/kg. Another compound, irampanel (7, BIIR 561CL, dimethyl-[2-[2-(3-phenyl-[1,2,4]oxadiazol-5-yl)-phenoxy]-ethyl]amine hydrochloride) showed anticonvulsant effect; its mechanism is due to the combination of antagonistic action at AMPA receptors and Na⁺ channel blocking properties, in a maximal electroshock model in mice with an ED₅₀ value of 2.8 mg/kg after subcutaneous administration.
Directly investigation of quinazolinones showed that there is a strong lactam-lactim tautomeric interaction. The significance of these extended tautomeric effect as shown in (Figure 7) is that they enhance the reactivity of the substituted 4(3H)-quinazolinone. One of the most frequently encountered heterocycles in medicinal chemistry is 4(3H)-quinazolinone with diverse biological activity such as PDE-1 inhibitor, anticancer, analgesic and anti-inflammatory, antimalarial, antiviral and antihypertensive activity.

![Figure 5: Tautomeric effect.](image)

Some of the few reports available in literature revealed that substituted quinazolin-4(3H)-one exhibit anticonvulsant activity. Boltze et. al. has reported the synthesis of 2-(2-arylethenyl)-3-o-tolyl-4(3H) quinazolinone derivatives and among them analogues (8) and (9) displayed very good anticonvulsant activity.

![8](image)

![9](image)

Varshav jatav et. Al reported 3-[5-substituted 1,3,4-thiadiazole-2-yl]-2-styrylquinazoline-4(3H)-ones derivative. Some of the synthesised analogues showed mild to moderate anticonvulsant activity, among these analogues 4d & 4e displayed moderate to good activity.

![12](image)

4d. Ar = p-ClC₆H₄, R₂ = p-ClC₆H₄

4e. Ar = p-ClC₆H₄, R₂ = m-ClC₆H₄
Recently, Sushil K. Kashaw et al.47 has reported the synthesis and anticonvulsant activity of series of 1-(4-substituted phenyl)3-(4-oxo-2-phenylethyl)-4H-quinazolo3-yl)-urea derivative (13).

![Chemical Structure of Compound 13]

Among these compounds E10, P10, P5, P7, P8 showed good anticonvulsant activity. Ponnilavarasan Ilangovan et al.47 reported the synthesis of 2-Aryl-3-amino-4H-quinazolinone semicarbazone analogues (14) for anticonvulsant activity.

![Chemical Structure of Compound 14]

The analogues 1, 2, 4, 6 and 8 were active at 30mg/kg only at 0.5h, indicating that they have rapid onset and shorter duration of action. Moshsen M. Aly et al.49 reported the synthesis of quinazolinone based thiosemicarbazone derivative showing mild to moderate anticonvulsant activity. Among these compound 10b, 10d and 10f were formed to exhibit morderate anticonvulsant activity.

Structural Activity Relationship

It showed that a substituted aromatic ring in position 3 and a methyl group in position 2 are required for a significant anticonvulsant activity of the compound. Substituted methyl group also supports anticonvulsant action. The replacement of the CH\textsubscript{3} group in position 2 by an alkoxymethyl or alkylthiomethyl groups, the anticonvulsant activity was retained.
Conclusion

Non-competitive binding to AMPA receptors [AMPA is α-amino-β-(3-hydroxy-5-methylisoxazol-4-yl) propionic acid] is considered as a possible mechanism of the anticonvulsant action of quinazolinone derivatives. Some scientists believe that the proper quinazolinone nucleus is responsible for the anticonvulsant action50.

References