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Abstract 

Learning and memory is a complex process mediated by number of receptors and subproteins. Different receptor 
subtypes plays different role in learning and memory process. An array of mediators like noradrenaline, 
acetylcholine, dopamine (DA), serotonin (5-HT), GABA, glutamate, nitric oxide and peptides influence cognitive 
behaviour of the animal. Long term potentiation involving synaptic plasticity in cognition process is mediated by 
interaction of dopamine and glutamate in different brain regions. Aim of the present review is to highlight the 
role of different receptors subtypes in modulation of learning and memory process as evidenced by different 
studies thus providing a source of information for development of new therapeutic strategy for dysfunction in 
memory through targeting specific receptors subtypes. 
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Introduction 

Lifestyle involving stress in today’s competitive 
world is the root cause of mental illness, including 
cognitive disorders. Patients of dementia suffer from 
loss in intellectual, functional, cognitive and social 
capabilities and they later on become dependent 
entirely on care taker. Learning is a process 
comprising of synergistic effect of cognition, 
psychomotor and affective, environmental 
experiences required for the acquisition, 
maintenance, organization, reorganization and 
enhancement of changes in an individual’s 
behaviour, knowledge, skills, values, personality and 
world views for better resolution of problems [1]. 
Dementia is a cripling health conditions world over 
[2]. Patients of dementia suffer from 
neurodegeneration which can lead over period of 
time to death [3]. Various neurotransmitters like 
acetylcholine, dopamine, serotonin, noradrenaline, 
GABA, Glutamate, nitric oxide and peptides 
influence learning and memory as evidenced by 
different studies [4]. This neurotransmitter plays 
versatile role in nerve transmission during the 
process of memory formation [5]. Biogenic amines 
are known to be involved in the process of learning 
and memory and have significant and complex effect 
on cognition [6]. Long term potentiation and long 
term differentiation are promoted by interaction of 
dopamine and glutamate in various brain regions [7]. 
In the present study effect of different receptors 
with varying role in learning and memory is 
discussed. 

Dopamine receptors    
Different dopamine receptor subtypes are 

involved in learning and memory. Dopamine played 
an important role in spatial working task and 
serotonin effect the action of dopamine upon 
spatial memory within cortical networks in human 
study [8]. In another study low serotonin versus 
dopamine selectively impairs memory performance 
in humans, low 5-HT activity impaired declarative 
memory consolidation on a structured word-
learning task while low dopamine availability 
impaired spatial working memory [9]. 

Specifically dopamine D1 receptors play an 
important role in mediating plasticity and different 
facets of cognitive functions like spatial learning 
and memory process. Memory-improving 
properties of DA agonists on tasks sensitive to 
both hippocampus and caudate lesions are 
mediated by the D2 receptor. D2 receptors play 

important role for verbal learning and executive 
function [10] while D1 receptors in memory 
involving spatial working [11]. D1 and D5 receptor 
stimulates adenyl cyclase in the CA1 region of 
hippocampus and induce a long term potentiation 
of excitatory post synaptic potential aiding in 
memory which are blocked by specific D1/D5 
receptor antagonist [12]. cAMP and cAMP-
dependent protein kinase pathway played an 
important role in long term potentiation in the 
hippocampus and protein synthesis-dependent 
phase of memory formation induced by dopamine. 
In a study considering inhibitory avoidance learning 
involving late memory consolidation phase, the 
process is regulated by a hippocampus mediated 
cAMP pathway and activated, by both D1/D5 
receptors [13]. 

Serotonin receptors 
Serotonergic projections modulate various 

aspects of learning and memory [14]. It is 
hypothesized that serotonergic neurotransmission 
on the whole may not be responsible for changes 
in memory, but rather disturbances in the 
functional balance between the components of 
this brain neurotransmitter system with other 
neurotransmitter causes changes in learning and 
memory [15]. It is likely that some 5-HT receptors 
act in opposition to other 5-HT receptors and/or 
neurotransmitter systems during learning. Every 5-
HT receptor identified until now has been localized 
in the hippocampus, amygdale and cortex areas of 
brain which are involved in learning and memory. 
Multiple 5 HT serotonin receptor subtypes are 
reported to be involved during sensitization 
process in memory encoding in aplysia. 5 HT act 
within the sensory neurons through cAMP-PKA 
(cAMP protein kinase A) pathway, and also 
activates a variety of other protein kinases like 
extracellular signal-regulated kinases, protein 
kinase C and tyrosine kinases [16]. 

5-HT3 receptor antagonists have been shown to 
induce learning and memory and reverses the 
anticholinergic ligand’s effect or age-induced 
memory loss in rodents. 5-HT3 receptors are also 
known to be involved in the modulation of learning 
and memory in a study on primates [17]. While in 
case of 5-HT2 receptor, infusion of 5-HT2 antagonist 
ketanserine after training in the rat striatum 
induces a retention deficit in an inhibitory 
avoidance task [18], while in another study 
receptor antagonist ritanserine improves retention 
memory, which could be due to blockade of 5-HT2 
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heteroreceptors located in cortical area or 
pallido-striatal afferent axons, mediating inhibition 
of dopamine release within the striatum [19]. 
Activation of 5-HT2A receptor causes an increase in 
learning through an action on pyramidal cortical 
cells post-synaptically as well as through 
heteroceptors located on presynaptic terminals of 
cortical cholinergic and glutamatergic neurons 
[20]. Serotonin 5-HT4 receptors are widely 
expressed in the central and peripheral neuronal 
systems (19). 5-HT4 receptor is a G protein coupled 
receptor (GPCR) belonging to serotonin receptor 
family and is coupled to G protein containing Gas 
subunit [21]. 5-HT4 receptors are majorly 
distributed in the limbic structures, the 
hippocampus, which plays an essential role in 
memory processes. 5-HT4 receptors activation 
stimulates adenylyl cyclase activity in rats and 
guinea pig’s hippocampus. 5-HT4 receptors are 
present mostly in the limbic system and hence 
showed prominent role in cognition. Number of 5-
HT4 receptors have been found to decrease in 
Alzheimer’s patients and in different studies it have 
been concluded that stimulation of 5-HT4 increase 
the release of acetylcholine in the frontal cortex 
and the extracellular level of 5- HT [22, 23, 24]. 5-
HT4 receptors are involved in the alteration of the 
cholinergic function associated with learning and 
memory. Interaction between the serotonergic 
system via 5-HT4 receptors and the cholinergic 
system was further confirmed by neurochemical 
evidence in which hippocampus ACh release was 
enhanced by activation of 5-HT4receptors [25]. 
These findings suggest an involvement of 5-
HT4 receptors in the modulation of cognitive 
functions. Receptor activation by an agonist, leads 
to the generation of intracellular cyclic AMP 
(cAMP) which in turn activates Protein kinase A. A 
cascade of signalling events result in the 
phosphorylation of cAMP response element 
binding protein (CREB) leading to the expression 
of a number of genes involved in cell survival. 
Findings have supported the therapeutic potential 
of 5-HT6 receptor compounds in the treatment of 
cognitive dysfunction like Alzheimer's disease and 
schizophrenia [26]. On the other hand 5-HT6 
antagonist Ro 04-6790 induces an improvement of 
acetylcholine neurotransmission and spatial 
memory [27]. Showing important role of 5-HT6 

receptor in the regulation of central cholinergic 
function, indicating that it represents a major 
target for the treatment of cholinergic defects in 

cognitive dysfunctions, such as Alzheimer’s 
disease.  

In absence of neural activity, stimulation of both 
the hippocampus 5-HT1A and 5-HT7 receptors 
results in increased CREB phosphorylation [28]. 
Such findings were rather unexpected, considering 
that 5-HT1A receptors couple with Gi to inhibit the 
cAMP pathway, while 5-HT7 receptors couple with 
Gs to stimulate the cAMP pathway in cell lines over 
expressing this receptor subtypes [28]. 5-HT7 
receptors antagonist SB-269970 improves 
memory, decreasing the number of errors in test 
phase while affecting reference memory, and no 
effects were observed in working memory.      

NMDA (N-methyl-D-aspartate) receptor 
NMDA receptor a kind of glutamate receptor, is 

responsible primarily for maintaining synaptic 
plasticity and memory process and is required for 
long-term potentiation (LTP) in the hippocampus, 
amygdale, and medial septum and is linked to 
many animal models. Calcium ion influx through 
receptor is critical in aiding this plasticity, which is a 
cellular basis for learning and memory. Hence 
NMDA is strongly linked to new learning and 
memory as evidenced by various studies in animal 
models [29, 30]. NMDA receptor play a major role 
in acquiring adaptations in motor learning as 
evidenced by a study in healthy volunteers 
administered with amantadine [31] and also 
involved in sensory information processing. In 
human brain NMDA receptor blockade [32] are 
associated with cognitive impairment and 
psychosis [33]. Given the central role of glutamate 
in cognition and memory in particular, drugs are 
also being developed that target NMDA receptors. 
Some studies suggests the effectiveness of 
memantine to treat Alzheimer’s disease in 
combination with acetyl cholinesterase inhibitors 
[34]. In a study administration of MK-801, a NMDA 
receptor antagonist causes amnesia as evidenced 
by increased transfer latency time on elevated 
maze showing the role of glutamate NMDA 
receptor in spatial orientation [35]. In a similar 
subsequent study by same group, administration 
of NMDA (s.c.) after the acquisition session on 
elevated maze protected the animals against 
amnesic effect induced by MK-801 given just 
before the retention session [36]. 

AMPA Receptor (α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor) 

AMPA is a non-NMDA-
 ionotropic transmembrane receptor which binds 

http://en.wikipedia.org/wiki/Synaptic_plasticity
http://en.wikipedia.org/wiki/Synaptic_plasticity
http://en.wikipedia.org/wiki/Memory
http://en.wikipedia.org/wiki/Synaptic_plasticity
http://en.wikipedia.org/wiki/Learning
http://en.wikipedia.org/wiki/Memory
http://en.wikipedia.org/wiki/Ionotropic_receptor
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to glutamate and 
mediates synaptic transmission in the nervous 
system. The name is derived from its ability to get 
activated by the artificial glutamate analog AMPA. 
Long-term memory for habituation to a novel 
environment depends on the functionality of 
AMPA/kainate glutamate receptors in the 
hippocampus and is modified by agents that 
potentiate intrinsic inhibition of GABAergic 
neurons [37]. 

Noradrenaline receptor 
Number of controversial studies is available for 

the role of central catecholamine mediated 
neurotransmitter system in general and in 
particular for noradrenergic system for their role in 
cognition, so in this view a simple generalization 
cannot be made. It is very well known that 
amphetamines causes mental confusion and 
retards consolidation of memory by augmentation 
of central noradrenergic neurotransmission. 
Application of electroconvulsive shock caused 
amnesic effect due to increase in noradreanaline 
(NA) neurotransmitter turnover in rat brain and 
which is attenuated on administration of piracetam 
[38]. Administration of nordadrenaline peripherally 
as well as centrally suppressed avoidance 
behaviour but also found to be facilitatory in some 
studies [39]. Increasingly, drugs targeting primarily 
the NA system are being seen as viable treatments 
to some aspects of executive dysfunction. 
Atomoxetine, a selective NA reuptake inhibitor, 
has recently been licensed for ADHD (Attention 
deficit hyperactivity disorder) and is believed to 
exert its influence by increasing the levels of NA 
and DA in the prefrontal cortex but not in the 
striatum [40]. Although the cognitive effects of 
atomoxetine have yet to be extensively examined, 
preliminary evidence suggests that it is associated 
with improved selective attention and response 
inhibition, but not spatial working memory [41, 42]. 
Likewise, guanfacine, a NA α 2A agonist, has been 
shown to improve attentional and executive 
functioning in ADHD [43]. 

Acetylcholine receptors 
Acetylcholine plays an essential role in process 

of cognition [44]. Acetylcholine receptors are 
highly expressed in the hippocampus. ACh signals 
through two classes of receptors: metabotropic 
muscarinic receptors (mAChRs) and ionotropic 
nicotinic receptors (nAChRs) [45]. Muscarinic 
acetylcholine receptors have been shown to be 
present in the many different areas of the central 

nervous system, through radioligand binding 
studies, by the use of oligonucleotide probes [46] 
and more recently through immunocytochemistry 
[47]. As examples of the heterogeneous effects of 
mAChR stimulation, presynaptic M2/M4 mAChRs 
can act as inhibitory auto receptors on cholinergic 
terminals [48, 49] and reduce glutamate release 
from corticocortical and corticostriatal synapses 
[50, 51]. In contrast, M1/M5 receptors can stimulate 
dopamine (DA) release from striatal synaptosomes 
[52] and postsynaptic M1/M5 receptors can 
increase excitability of cortical pyramidal neurons 
[48, 53]. The potential roles of the individual 
muscarinic receptors in learning and memory are 
not well understood at present, primarily because 
of the lack of ligands endowed with a high degree 
of receptor subtype selectivity. 

Conclusion 
The findings of this study revealed that there is 

probably a functional relationship between 
different receptors subtypes in various types of 
learning hence acting as relevant targets for 
development of new drug candidate acting on 
these receptors for treating cognitive disorders. 
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