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Abstract 

Alzheimer’s disease (AD) is an irreversible, progressive and neurodegenerative brain disorder characterized by 
memory impairment that results problems in day-to-day life and in accomplishing usual tasks, causes 
inconvenience in understanding visual images and spatial relationships. Familial AD is correlated with the 
mutations in the amyloid precursor protein (APP) and presenilin genes (PSEN1 and PSEN2) and Aβ metabolism, 
whereas APOEε4 moderates amyloid-related memory decline in preclinical AD. On the contrary, sporadic AD is 
found to exist with complex interaction of both genetic and environmental risk factors. Genome-wide association 
studies and whole-exome and whole-genome sequencing have brought out more than 20 loci correlated with AD 
risk. Genome-wide associated studies (GWAS) have identified polymorphisms in or near several genes that are 
correlated with AD risk, including ABCA7, CLU, CR1, CD33, CD2AP, EPHA1, BIN1, PICALM and MS4A. Among most 
of them, central role of ApoE, CLU and ABCA7 in cholesterol metabolism imposes this pathway in AD 
pathogenesis. CR1, CD33, MS4A, CLU, ABCA7, EPHA1 and TREM2 are associated with neuroinflammation and 
dysregulation of the immune response. Genes associated with endocytosis and synaptic function are recognized 
in several GWAS of LOAD risk, including BIN1, PICALM, CD2AP, EPHA1 and SORL1. 

Keywords: Alzheimer’s Disease, APOE, Amyloid Precursor Protein, Genes, Genome-Wide Association Studies. 

https://maps.google.com/?q=Monroe+1800+Bienville+Drive+Monroe,+LA+71201&entry=gmail&source=g
https://maps.google.com/?q=Monroe+1800+Bienville+Drive+Monroe,+LA+71201&entry=gmail&source=g
https://maps.google.com/?q=Monroe+1800+Bienville+Drive+Monroe,+LA+71201&entry=gmail&source=g
mailto:debusubju@gmail.com


PhOL     Tajmim, et al.    15 (pag 14-49) 
 

 
http://pharmacologyonline.silae.it 

ISSN: 1824-8620 

Introduction 
Alzheimer’s disease is one of the most common 
neurodegenerative brain disease which is the most 
prevalent cause of dementia [1-2]. It is a 
multifactorial brain disorder with insidious onset 
and progressive impairment of episodic memory 
resulting from the coordination of genetic, 
environmental and lifestyle factors [3-4]. 
Neuropathological characteristics of AD which 
provide complete apprehension of the molecular 
pathogenesis of the hallmarks of the disease are 
the extracellular accumulation of amyloid beta 
(Aβ) in plaques composed of amyloid β (Aβ) and 
the deposition of hyperphosphorylated tau 
proteins containing paired helical filaments in 
neurons named neurofibrillary tangles (NFTs) [5-6]. 
The symptoms of this slowly progressive disease 
include visuospatial dysfunction, visuoperceptual 
dysfunction, dyspraxia, executive dysfunction, 
literacy problems, and language dusfunction, 
apraxia, aphasia and agnosia conjointly linked with 
general cognitive symptoms, such as impaired 
judgment, decision-making, and orientation [7-
12].Familial Alzheimer’s disease is an uncommon 
autosomal dominant disease which is correlated 
with the mutations in the amyloid precursor 
protein (APP) and presenilin genes ( PSEN1 and 
PSEN2) and Aβ metabolism with onset before age 
65 years. On the contrary, sporadic Alzheimer’s 
disease is occurred frequently by ageing in concert 
with a complex interaction of both genetic and 
environmental risk factors affecting more than 15 
million people worldwide .But, the exact reason of 
the sporadic form of the disease is unrecognized, 
probably because of its heterogeneous 
characteristics [13]. This present article reviews the 
genetic architecture of Alzheimer’s disease with 
recent advancement of various genotypes with 
their clinical implications for expanding the genetic 
roadmap of this disease. This knowledge helps to 
disclose the possible new drug candidate targets 
by understanding the pathophysiological 
mechanisms for early-onset AD (EOAD) and late-
onset AD (LOAD). 
Genetic details of Alzheimer’s disease 
Numerous variants of genes involving in 
Alzheimer’s disease risk are shown in figure-1 
where APP, ABCA7,CLU play central role on 
cholesterol metabolism, MS4A, EPHA1, TREM2, 
CD33, CR1 act on immune response, as well as 
PICLAM, BIN1, SORL1, CD2AP provide action on 
endocytes [18]. 

1. Apolipoprotein E (APOE)  
Apolipoprotein E (APOE) is one of the strongest 
heritable risk factors for late onset of AD which is 
the essential brain apolipoprotein & secreted by 
astrocytes [14-17]. The relationship between APOE 
& AD was first introduced in 1991 [18] and later, it 
was affirmed in 1993 through studies of an 
association between the APOEε4 allele and AD risk 
[19-20]. In addition, apolipoprotein E (APOE) is 
located on the proximal long arm of 19th 
chromosome i.e., at chromosome 19q13.2 encoding 
a pleiotropic glycoprotein [17, 20]. APOE is highly 
distributed in liver, brain, and macrophages. Again, 
the concentrations of apoE in plasma and 
cerebrospinal fluid (CSF) are approximated to be 
40–70mg/mL and 3–5mg/mL respectively [21-23]. 
APOE has two structural domains including the N-
terminal domain which has receptor-binding region 
(residues 136–150), and the C-terminal domain 
containing the lipid-binding region (residues 244–
272); they are joined by a hinge region [24]. On the 
other hand, single nucleotide polymorphisms 
rs429358 and rs7412 occur at exon 4 in the APOE 
gene which has become non-synonymous resulting 
in an amino acid change from Cys to Arg and Arg to 
Cys [25]. In humans, based on two amino acid 
residues (112 and 158), the APOE gene exists as 
three polymorphic alleles (ε2, ε3, and ε4), where 
the APOEε3 allele is the most common (77%) and ε2 
allele being the least common (8%) [21, 26-27]. 

Moreover, individuals carrying the 4 allele have 
higher risk of AD compared to subjects carrying the 

more common 3 allele, whereas the 2 allele 
decreases risk [28-29]. APOEε4 increases risk in 
familial and sporadic early- and late-onset AD by 
enhancing 3-fold for heterozygous carriers and 8- 
to 10-fold for homozygous carriers. As a result, an 
elevated risk in familial and sporadic early- and late-
onset AD has been occurred [30] with dose-
dependent effect on age at onset [9-10, 30]. 
Surprisingly, APOEε2 decreases risk for late-onset 
AD and delays age at onset [9-10, 30]. Homozygous 

2/2, 3/3, 4/4 & heterozygous 3/2, 4/2, 4/3 are 
six types of ApoE phenotypes of allelic variants of 

ApoE 2, 3, 4 [31]. Rare coding variants that 
affect risk for AD may also occur in APOE [32-33]; 
however, deep sequencing of the APOE gene in 
large data sets has not been carried out [4]. ApoE3 
and apoE2 are associated with high-density 
lipoproteins (HDL) and apoE4 is related to very 
low-density lipoproteins (VLDL) and low-density 
lipoproteins (LDL) [34-35].
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The identification of APOE protein structure of 
each isoform suggests the correlation between the 
structure of APOE and the distinct function of 
APOE isomers in AD [36]. The principle function of 
APOE is to channelize lipids and cholesterols 
throughout the body [2, 16, 26, 37-38]. As APOE is a 
ligand for low density lipoprotein (LDL) receptors, 
it mediates the binding, internalization, and 
catabolism of lipoproteins in cell [16, 29, 37, 39-41]. 
APOE has also been implicated in synaptogenesis, 
synaptic plasticity, and neuroinflammation [15-16, 
37, 39, 41]. It has also role in glucose metabolism, 
lipolytic enzyme activation and several 
mitochondrial function [24, 29, 41]. In AD, ApoE 
binds to extra-cellular SP [24, 42] and intracellular 
neurofibrillary tangles [41, 43], as well as through 
Aβ-dependent and Aβ-independent 
neuropathogenic pathways [19] it affects AD 
pathophysiology. In the CSF, ApoE/Aβ levels were 
noticed to be lower in patients with AD than in 
healthy controls on account of binding of ApoE to 
the major constituent of senile plaques named Aβ 
peptide [18, 43]. 
APOE influences the clearance of soluble Aβ and 
the Aβ aggregation in the brain by binding to Aβ, 

where APOE4 binds to A more rapidly than 
APOE3 and accelerates fibril formation [40, 44-46]. 
APOE interacts with receptors such as with low-
density lipo-protein receptor-related protein 1 
receptors (LRP1) and indirectly regulates Aβ 
metabolism [46-47]. In APP transgenic mice, the 
amount and structure of intraparenchymal Aβ 
deposits are altered by APOE in an isoform-specific 
manner [48-49], whereas APOEε4 carriers exhibit 
accelerated and more abundant Aβ deposition 
than APOEε4-negative individuals [50-52]. 
Neuropathologic and neuroimaging studies 
demonstrate the association of APOE genotype 
with cerebrospinalfluid Aβ42 and tau levels [52-54]. 
A recent study of employed genomic convergence 
and network analysis approaches that the 
circulating ApoE level is considered as a potential 
biomarker for AD [55]. In M.W. Lutz et al, this study 
evaluated the correlation of age, APOE genotype, 
and translocase of outer mitochondrial membrane 
40 homolog (TOMM40) genotypes & comparative 
relationship of cerebrospinal fluid (CSF) 
biomarkers, neuroimaging, as well as 
neurocognitive tests using data from two 
independent AD cohorts by using the performance 
of genetics-based biomarker risk algorithm 
(GBRA). Here, the GBRA “high” and “low” AD-risk 

are classified & associated with pathologic CSF 
biomarker levels, positronemission tomography 
amyloid burden, and neurocognitive scores. As, the 
positive predictive values and negative predictive 
values of the GBRA are found in the range of 70%–
80%, the comparison of the performance of GBRA 
with CSF and imaging biomarkers becomes 
significant  (functional magnetic resonance 

imaging) [56]. In Y.Y. Lim et al., A positivity 

coupled with APOE4 was related with moderately 
increased decline in memory over a 54-month 
assessment period. It also suggests that in the 
preclinical stages of AD, the manifestation of 

memory decline in older adults with high A is 

aggravated in the presence of APOE4 [57]. 
Cross-sectional studies with appropriate sample 
sizes (e.g., n>200) suggests that there is no 
cognitive impairment in APP individuals 

irrespective of whether they carry 4 or not [58-
63]. 
Various cross-sectional studies have suggested 
that the APOEε4 carrying AD patients have greater 
impairment in memory and executive function 
than who do not carry APOEε4 or healthy 
volunteers [64]. In addition, mixed results with AD, 
APOEε4 carriers have been reported from various 
longitudinal studies that AD APOEε4 carriers shows 
slower [65-66], faster [67-69],or equivalent[70-71] 
rates of cognitive decline than their non-APOEε4 
counterparts.  
A study was conducted in the Gazi University, 
Dept. of  Neurology to impose the relationship 
between AD & APOE phenotype & vascular risk 
factors among 44 patients diagnosed  with 
‘possible AD’ and 51 volunteers without an 
intracranial degenerative disorder included as 
control group. Here, low education level, smoking, 
hyperlipidemia, higher serum total cholesterol 
levels, and hyperhomocysteinemia were reported 
significantly more frequent in the Alzheimer’s 
Disease group in comparison to the Control Group, 

due to the presence of apoE4/4 genotypes in the 
AD group. ApoE4 allele may be responsible for 
increasing vascular risk factors as well as to affect 
AD directly [31]. 
2. APP 
β-amyloid precursor protein (APP) is a type-1 
transmembrane neuronal protein which appears 
like a signal-transduction receptor [72]. In addition, 
it is manifested in many tissues and intensified in 
the synapses of neurons [72].Again, the encryption 
of the Aβ peptide precursor occurs in APP gene 



PhOL     Tajmim, et al.    17 (pag 14-49) 
 

 
http://pharmacologyonline.silae.it 

ISSN: 1824-8620 

which is situated at chromosome 21q21 [73-76]. 
This recommendation was affirmed with the 
relationship of specific mutations in APP with 
EOAD in families [77-80]. Comprising of 19 exons 
APP gene extends approximately 240 kilobases of 
DNA whereas full-length APP develops in the Golgi 
and endoplasmic reticulum [81]. 
As APP is interlaced to create three transcripts: 
APP695, APP751, and APP770, at least eight 
isoforms are produced by alternate splicing of 
exons 1–13, 13a, and 14–18. These transcripts 
develop a multi domain protein with a single 
membrane-spanning region differing from each 
other [82-84]. Moreover, the APP695 isoform 
(exons 1–6, 9–18) is the leading APP isoform which 
is evinced in neurons, whereas the APP751 isoform 
(exons 1–7, 9–18) is highly showed in astrocytes 
[85-87]. APP751 and APP770 (exons 1–18) are 
distinguished from APP695 in that they contain 
exon seven encoding a serine protease inhibitor 
domain [81]. At first, APP is made in the 
endoplasmic reticulum, then post transcriptionally 
altered in the Golgi (N- and O-linked glycosylation, 
sulfation, and phosphorylation). Finally, it is 
released to the cell surface via the secretory 
pathway, as well as endocytosed and processed in 
the endosomal–lysosomal pathway from the cell 
surface [88-89]. As, APP and its by-product Aβ 
have been noticed to be transferred inside 
mitochondria, they are involved in mitochondrial 
dysfunction [90-92]. Its primary function is 
unknown, though it has been found to be involved 
in neural plasticity [93] and acts as a regulator of 
synapse formation. [94]. However, full-length APP 
is proteolytically processed to yield various 
fragments via the amyloidogenic and the 
nonpathogenic pathways. In amyloidogenic 
pathway, APP can be split by sequential functions 

of β- and -secretases to produce A peptides, 

secreted amyloid precursor protein-( sAPP) and 

-C-terminal fragment (-CTF). Being encoded by 
exons 16 and 17 and 39 to 42 amino acids in length 
at intracellular sites such as the endoplasmic 
reticulum and Golgi apparatus, extracellularly 
released Aβ peptides form the extracellular 
plaques as stylemarks of AD. Simply, APP is split by 
the β-secretase, named β-site amyloid precursor 
protein-cleaving enzyme 1 (BACE-1) by producing 
N-terminal sAPPβ and C-terminal C99 peptide 
which is cleaved by γ-secretases to produce Aβ [72, 
95]. 

In nonpathogenic pathway, APP is proteolyzed by 

- and -secretases within abdomen resulting the 
cleavage of APP. Here, APP is cleft by the action of 
α-secretase and releases the extracellular amino-
terminus of APP as a secreted amyloid precursor 
protein-α (sAPPα), as well as by the action of γ-
secretase, an 83-residue carboxy-terminal 
fragment (C83) is generated by releasing 
extracellular p3. In addition, the intracellular 
cytoplasmic fragment is identified as amyloid 
intracellular domain (AICD) to show neurotrophic 
and neuroprotective activities [72, 95-98]. The 
product C-terminal fragments are of 10 and 12 kDa, 
respectively, which are entered into the membrane 
and accumulated in the brain [99]. It has been 
found that collection of APP C-terminal fragments 
(CTFs, C83, C89, and C99) especially C99, may act 
as neurotoxic by itself where APP CTFs are able to 
provide synaptic plasticity and long-term memory 
in murine models of AD [100-105]. 
In Goate et al. (1991), the accumulation of a 
missense mutation of APP was found first in 
families with AD and subsequently found that two 
mutations including a single amino acid 
substitution (Phe for Val) in the transmembrane 
domain and a Val for Gly substitution at codon717 
[78,80] had been occurred. From another study, 
the mutation was found to exist in exon 17 of the 
APP gene which was partially encoded for the Aβ 
peptide resulting a valine to isoleucine change at 
amino acid 717 (Val717Ile) corresponding to the 
transmembrane domain of the protein. In 
numerous recent studies, more than 30 different 
APP missense mutations have been recognized, 
among them approximately 25 are pathogenic, in 
most cases developing in autosomal dominant 
early-onset AD [106]. Since, numerous APP 
mutations cluster at or after the C-terminal portion 

of the abdomen, they change -secretase function. 
They exhibit an alteration in APP processing that 

stimulates the highly amyloidogenic A42 
fragment and decreases the Ab40 fragment 

providing an altered A42/A40 ratio without a 

change in total A levels [107]. Distinct number of 
APP mutations have been recognized in  AD 
patients, among them 23 are missense mutations, 
nine duplications, and one deletion [106], whereas  
majority of the mutations are dominantly inherited 
and  located the  -and  -secretase cleavage sites 
by regulating APP proteolytic processing and  
aggregation. The Italian mutation (E693K) [108], 
Dutch mutation (E693Q) [109], Arctic mutation 
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(E693G) [110], Iowa mutation (D694N) [111], 
London mutation (V717I) [77-78, 112-113], the V717G 
[77], V717F [80,113] and V717L [80,113- 117] 
mutations and E693del mutation [114] have been 
recognized in APP residues V717 and E693, 
developing both residues mutation hotspots in the 
APP gene. Numerous mutations, such as the 
Iranian mutation (T714A) [115], Australian mutation 
(T714I) [116], French mutation (V715M) [117], 
German mutation (V715I) [106], Florida mutation 
(I716V) [118], frame the other end of the A domain 
are situated  just distal to the C-terminus of the A  
domain adjacent to the  -secretase site, whereas 
other mutations such as the Flemish mutation 
(A692G) [119] are found to be located within the 
A  coding sequence. In Suzuki et al., three such 
mutations (V717I, V717F, and V717G) were 
systematically related with a 1.5- to 1.9-fold 
increase in the generation of longer beta-amyloid 
fragments by generating insoluble amyloid fibrils 
more rapidly than shorter fragments [120]. 
Yamatsuji and colleagues showed that in cultured 
neuronal cells expression of the cytoplasmic 
domain of any of the mutations at amino acid 717 
(V717I, V717F, and V717G) accelerated G protein-
mediated nucleosomal DNA fragmentation [121]. 
In recent epoch, Jonsson and colleagues found a 
rare mutation (A673T) in the APP gene which was 
found to be protective in contrast to AD leading to 
an approximately 40% reduction in the production 
of amyloidogenic peptides in vitro [122]. Mutations 
in APP genes have become autosomal dominant in 
most cases, the mutation A673V stimulates AD in 
an autosomal recessive pattern [123-124]. As, copy 
number variant mutations are common occurrence 
in APP [125], down's syndrome (caused by the 
presence of an extra chromosome 21) produces 
three copies of APP resulting AD because of 
abundance of APP [126]. Approximately 14% of 
early-onset autosomal dominant cases of AD are 
occurred by dominant mutations in APP [127] and 
two recessive APP mutations, A673V and E693D, 
generate early-onset AD [127]. 
3. Presenilin 1 (PSEN1) and Presenilin 2 (PSEN2) 
Presenilins are starring components of the atypical 
aspartyl protease complexes and these are 
accountable for the γ-secretase cleavage of APP 
[128]. In addition, PSEN1 and PSEN2 are integral 
membrane proteins comprising nine 
transmembrane domains with a hydrophilic 
intracellular loop region. They are situated at 
chromosome 14q24.3 and 1q31-q42 respectively 

[129-130] and form catalytic core of the γ-secretase 
complex. They are observed at the cell surface, but 
they may also be located in the Golgi, endoplasmic 
reticulum and mitochondria [131-134]. However, 
PSEN1 is composed of 12 exons encoding a 467-
amino-acid protein which is anticipated to traverse 
the membrane 6 to 10 times; the amino and 
carboxyl termini are both pointed toward the 
cytoplasm [135].On the other hand, PSEN2 is 
composed of 12 exons and formed into 10 
translated exons encoding a 448-amino-acid 
peptide, as well as is recognized by sequence 
homology [136-140]. Again, more than 185 
mutations in PSEN1 have been introduced [30,130] 
as the most familiar cause of early-onset AD and 
accountable for 18–50% of autosomal 
dominantearly-onset AD [134], as well as most of 
them is missense mutations responsible for amino 
acid substitutions. Although, mutations in PSEN1 
develop the most severe forms of AD with 
complete penetrance; onset becomes apperant at 
approximately 58 years of age with the exhibition 
of incomplete penetrance [141]. Numerous studies 
have been conducted with various types of PSEN-1 
mutations in different ethnic groups where 
founder mutation in PSEN1 was found to develop 
early-onset AD in unrelated Caribbean Hispanic 
families [142]. 
Yescas et al. (2006) reported that in Mexican 
families, AD was developed by the A431E mutation. 
An unusual onset age in adolescence was reported 
by PSEN1 L166P mutation, where in vitro studies 
introduced that this mutation stimulated 
exceptionally high levels of Aβ42 production by 
impairing Notch signaling [143-144].  
A retrospective cohort study engaging 449 
participants, who were PSEN1 E280A carriers 
having complete clinical follow-up reported 
distinct stages of clinical progression to AD 
dementia. The study introduced asymptomatic pre-
mild cognitive impairment (pre-MCI), symptomatic 
pre-MCI, MCI, dementia, and death were 
developed at approximately 35 years, 38 years, 44 
years, 49 years and 59 years of age, respectively 
[145]. 13 dominant, pathogenic PSEN2 mutations 
are responsible for approximately 5% of early-
onset, familial AD cases [30].Missense mutations in 
the PSEN2 gene have been reported that the age 
of onset of AD patients are highly variable and 
lower penetrance than PSEN1 among affected 
family members, whereas  the activities of PSEN2 
in early-onset AD remains unidentified [146]. A 



PhOL     Tajmim, et al.    19 (pag 14-49) 
 

 
http://pharmacologyonline.silae.it 

ISSN: 1824-8620 

recent study reported that mutant PSEN2 
stimulates the action of β-secretase by regulating 
reactive oxygen species-dependent activation of 
extracellular signal regulated kinase [147]. Recent 
evidence suggests that numerous nonpathogenic 
or unknown pathogenic additional variants, such 
as PSEN2 R62H [148] and PSEN1 E318G [149] are 
identified and supposed to act as risk factors for 
AD. 

The -secretase complex is formed by comprising 
PSEN1 ,PSEN2 ,nicastrin, anterior pharynx-
defective-1 (APH-1), and presenilin enhancer 2 
(PEN2)  by catalyzing  the cleavage of many 
membrane proteins [150].  Kinetic reports by 
Cha´vez-Gutie´rrez and colleagues have exhibited 
that familial AD mutations in PSEN1 and PSEN2 

alter the action of -secretase by three 
mechanisms [151]. First, the intracellular domain of 
APP is released by the variable inhibitory action on 
the initial endoproteolytic cleavage step. Second, 
the premature release of Intermediary substrates 
of APP occurs during the consecutive 

carboxypeptidase-like -secretase cleavage 

resulting the generation of longer A peptides. 
Finally, the cleavage of APP at position 49–50 or 
50–51 has occurred by the action on the cleavage 
site .These three mechanisms present a 
demonstration of the historical facts  that PSEN1 
and PSEN2 mutations occurs with the alteration of 
Ab42/Ab40 ratios. 
4. ATP Binding Cassette Transporter 7 (ABCA7)  
ATP-binding cassette transporter A7 (ABCA7) 
belongs to the ABC transporter superfamily which 
is is a 2,146-amino acid protein having two highly 
conserved ATP binding cassettes [152-153]. The 
location of ABCA7 which was first recognized in 
macrophages is on chromosome 19p13.3 encoding 
a protein with suspected roles in lipid metabolism 
and the phagocytosis of apoptotic cells [152, 154-
155]. Having 46 Exons, it spans about 32kb [152-
154], whereas the mRNA is 6.8kb In length 
encoding a polypeptide of 2146 amino acids with a 
calculated molecular weight of 220kDa [152]. 
ABCA7 has spliced into two transcripts, both of 
which are expressed in the brain [156]. But it is 
distributed abundantly in myeloid cells, particularly 
monocytes and granulocytes [152]. Here, 
expression is stimulated by distinction of 
monocytes into macrophages [152] whereas in 
macrophages, up-regulation of both mRNA and 
protein is occurred through altered low-density 
lipoprotein and down-regulation is reported in 

presence of HDL [152]. Again, ABCA7 is distributed 
in hippocampal CA1 neurons where its expression 
occurs at 10-fold higher levels in microglia 
[156].Various SNPs of ABCA7 were recognized by 
GWAS in LOAD as risk alleles, whereas rs3764650 
[157-160] and rs4147929, which were recognized in 
a meta-analysis of 74,046 individuals [160]. LOAD 
risk is stimulated through polymorphisms in this 
region. But, the impact of these polymorphisms on 
ABCA7 function and in AD is poorly recognized 
through various observations [161-162]. In brains 
with AD, rs3764650 in ABCA7 is linked with neuritic 
plaque burden [163]. A behavioral study of ABCA7 
knockout mouse model reported that ABCA7 
mRNA expression in autopsy brain tissue is also 
correlated with advanced cognitive decline [161-
162]. ABCA7 acts as key regulator in the efflux of 
lipids from cells into lipoprotein particles whereas 
in vitro, ABCA7 enhances cholesterol efflux by 
inhibiting Aβ secretion [164-165].Through the C1q 
complement pathway, ABCA7 has been reported 
to mediate phagocytosis of apoptotic cells by 
macrophages [166].Stimulated levels of ABCA7 
increases microglial phagocytosis of apoptotic 
cells, synthetic sub-strates, and Aβ [164,166-168] 
and also enhances AD risk by cholesterol transfer 
to APOE or by clearing Aβ aggregates [164-
165,169]. ABCA7-deficient mice have been reported 
to show only modest effects on lipid homeostasis 
in comparison with ABCA1-deficient mice [164,170], 
suggesting that ABCA7 is not essential. 
5. Bridging Integrator 1(BIN1) 
The BIN1 (Bridge Integrator 1 or Amphiphysin 2) is a 
widely evinced 70 kDa nuclear protein whose 
location is on chromosome 2 (2q14.3) encoding 
several splice variants [171-173]. Being differentially 
spliced to seven major transcripts, it is mostly 
distributed in the brain and the muscles and has 20 
exons [172,174-175]. All of these are ascertained by 
immune precipitation and immune fluorescence 
experiments [173]. Previously it was recognized as 
Myc box-dependent-interacting protein 1 which 
interacts with Myc-box regions of the MYC 
oncoprotein [173]. The involvement of BIN1 in 
posterior cortical atrophy has been observed [176]. 
The relation between the terminal portion of BIN1 
and amphiphysin which is a cancer-associated 
autoantigen, and again to RVS167 which is a 
popular as a regulator of the cell cycle in yeast is 
well-establised [173]. The role of BIN1 as tumor 
suppressor is detected by the negative influence of 
the cell cycle [173]. 10 isomers of BIN1 have been 
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identified which are developed by variable splicing 
of the mRNA [175] among them largest isoform is 
distributed exclusively in the brain and 
concentrated in nerve terminals (NCBI GeneID 274; 
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene
&cmd= Retrieve& dopt=full_report&list_uids=274) 
and other smaller isoforms are brought forth 
generated by deletion of downstream exons, 
particularly 7, 11, 13, and 14 (NCBI Gene ID 274). 
The SNPs in BIN1 which are responsible to enhance 
risk for LOAD were recognized by GWAS [157-158], 
whereas the most recent LOAD GWAS of 74,046 
individuals found out rs6733839 [160]. Among 
other SNPs, SNP rs7561528 is responsible for 
entorhinal cortical thickness and temporal pole 
cortical thickness [177], whereas the SNP 
rs59335482, in linkage disequilibrium with 
rs744373, is correlated with upgraded BIN1 mRNA 
expression and tau loads, but not tangles, in brains 
with AD [178]. The most significant SNPs, rs744373 
and rs7561528, are found to be situated >25 kB 
upstream from the BIN1 coding region [160]. Two 
nonsynonymous SNPs in BIN1, rs11554585 (R397C) 
and rs11554585 (N106D) are anticipated to be 
deleterious by employing bioinformatics 
approaches [179]. Being widely distributed in 
neurons, BIN1 physically interacts with tau in 
neuroblastoma cells and mouse brains [178], 
whereas the distribution of BIN1 in frontal lobes of 
24 sporadic AD patients is lower in comparison 
with 24 control patients [180]. These two 
contradictory phenomenon need to be confirmed 
by further experiments.  
In aging mice, in transgenic mouse models of AD, 
and in persons with schizophrenia , the variation of 
the nature of BIN1 has been exhibited [181-
182].Amphiphysin 1 (a related protein) knock-out 
mice show lower synaptic vesicle recycling 
efficiency, seizures, and cognitive (memory) 
deficits [183]. In addition, the protein is recognized 
as the substrate for CDKL5, in which gene can be 
found to undergo mutation in patients with 
Genetics of AD 269 West syndrome and Rett 
syndrome, severe neurodevelopmental disorders 
[184]. The interaction of BIN1 with another 
microtubule-associated protein (CLIP-170) has been 
reported [185]. The suppression of BIN1 
knockdown in tau-induced toxicity occurred which 
was observed in Drosophila model of AD [178]. 
BIN1 interacting with clathrin and AP2/α-adaptin 
[186-187] and binding to lipid membranes, BIN1 
stimulates membrane curvature [188]. The role of 

BIN1 is in modulating clathrin-mediated 
endocytosis, intracellular endosome trafficking, 
senescence, immune response, calcium 
homeostasis, and caspase-independent apoptosis 
[95,174, 189, 191,192]. On the other hand, BIN1 has 
been shown to involve in phagocytosis by 
macrophages and binds α-integrins to govern the 
immune response [190]. 
Overall key functions of BIN1 is endocytosis and 
membrane recycling, cytoskeleton regulation, DNA 
repair, cell cycle progression, and apoptosis and 
decreased expression related with centronuclear 
myopathy, cardiomyopathy, and cancer [193] 
whereas upgraded expression is reported in AD.  
6. Clusterin (CLU) 
Clusterin (CLU) is a 75-kDa apolipoprotein which is 
widely distributed throughout the body, especially 
in the brain by playing a valuable role in apoptosis, 
complement regulation, lipid transport, membrane 
protection, and cell-cell interactions [194]. 
Structurally, the heterodimeric CLU is structurally 
comprised of two subunits joining by disulfide 
bonds [195], where subunits are generated by 
proteolytic cleavage of the clusterin precursor 
protein into alpha- and beta-peptide fragments 
[194].The location of CLU is on chromosome 8p21.1 
which is a stress-activated chaperone protein 
encoding three alternative transcripts [194,196].  
Because of having two coiled-coil  -helices, 
clusterin is considered as a heat shock protein 
[197]. CLU gene consists of 9 exons, covering 16Kb 
of DNA and is expressed in high sequence 
homology (70%–80%identity) across mammalian 
taxa [198]. Numerous single nucleotide 
polymorphisms (SNPs) have been recognized  in 
CLU providing protection against LOAD, including 
rs11136000, rs9331888, rs2279590, rs7982, and 
rs7012010 [157-159,199] where a relationship of 
CLUrs9331896 with LOAD was studied in 74,046 
individuals [160]. But the practical influence of 
these polymorphisms is poorly unknown. The 
SNPrs9331888 is connected with expression of an 
alternative splice variant [44] and rs9331888 and 
rs11136000 are found to exhibit effects with plasma 
clusterin levels [200-202]. Stimulated clusterin 
plasma levels are also related with brain atrophy, 
disease severity, and disease progression [203-
204], whereas Clusterin messenger RNA (mRNA) 
expression is stimulated in brains with AD being 
recognized in amyloid plaques [161,205-207]. As, 
clusterin alters Aβ clearance, amyloid deposition, 
and neuritic toxicity, purified clusterin interacts 
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with Aβ affecting fibril formation in vitro [208-209]. 
By influencing the membrane attack complex, 
clusterin inhibits the inflammatory response 
associated with complement activation [194]. Since 
neuroinflammation is a stylemark of AD, SNPs that 
influence clusterin expression or its role as an 
amyloid response agent could alter AD 
pathogenesis and downstream effects. 
7. Ephrin Type-A Receptor 1 (EPHA1) 
EPHA1 belongs to the ephrins family of tyrosine 
kinase receptors whose location is on chromosome 
7q34 encoding the ephrin type-A receptor 1 protein 
[210] .The EPHA1 attaches to membrane-bound 
ephrins-A ligands on adjacent cells resulting 
contact-dependent, bidirectional signaling to 
adjacent cells [211]. Having  18 exons ,the EPHA1 
genes span a little over 18kb[210] ,whereas EPHA1 
protein is composed of 976 amino acids which is 
approximately 108kDa [212]. EPH receptors 
regulate the MAPK pathway and response at 
glutamatergic synapses [212-214]. However, in 
transgenic mouse models of AD, it was reported 
that ephrin receptors were lowered in the 
hippocampus prior to the development of 
impaired object recognition and spatial memory 
,whereas  low levels of Eph receptor have been 
detected in postmortem hippocampal tissue from 
patients with incipient AD [215]. Depending upon 
the nature of the ligand, the family is divided into 
two groups. Between them, EPHA receptors attach 
to GPI-anchoredephrin-A ligands and EPHB 
receptors attach to ephrin-B proteins which 
contain a transmembrane and cytoplasmic domain 
[216].As, this class of proteins have been 
anticipated to key regulator of a “global 
positioning system” for developing cells in 
olfactory, cochlear, retinal and thalamocortical 
pathways [217] and these family of proteins have 
been involved in modulating brain development 
and axonal guidance [218]. It is distributed by CD4-
positive T lymphocytes and monocytes [219].The 
correlation of the SNP rs11767557, near EPHA1 with 
reduced LOAD risk have been reported [158-159], 
as well as the SNP rs11771145 was related with 
reduced LOAD risk in the largest GWAS study [160]. 
The modification of mRNA expression with EPHA1 
in brains with AD has not been reported [161].EPH 
and ephrin signaling play crucial role in the 
formation of segmented structures whereas EPH 
receptors are key regulators in guiding neural 
plasticity in the adult brain [220].  

8. Phosphatidylinositol Binding Clathrin 
Assembly Protein (PICALM) 

PICALM is a 70kDa protein affecting clathrin 
assembly which is expressed in pre-and 
postsynaptic structures, as well as it has been 
involved in the membrane retrieval of the synaptic 
vesicle [174, 221-222].The location of the PICALM 
gene is on chromosome 11 (11q14.2) with 23 
alternative transcripts having three isoforms. Here, 
the canonical sequence is 652 amino acids in length 
and two additional isoforms are made by deletions 
of short sequences of amino acids near the 3 ends 
of the transcript.  Again, the first 289 amino acids 
of the protein contain high degree of homology 
(81%) to the clathrin assembly protein AP3 and 
participate in clathrin-mediated endocytosis (CME) 
existing in the plasma membrane [174]. The 
participation of PICALM in CME is significant in the 
critical step of the intracellular movement process 
of lipids and proteins [222] and incorporation 
process of full-length APP from the cell surface in 
cell culture studies [223]. 
Being distributed in neurons, PICALM colocalized 
with APP in endocytic vesicles [224]. Moreover, it 
formed a complex which could be introduced by 
autophagosomes and target vesicles containing 
APP [225] and indicates a significant role in Aβ 
clearance. Again, colocation of PICALM with APP 
occurs in vitro and in vivo where APP trafficking is 
changed in vitro, and overexpression of PICALM in 
vivo stimulates plaque deposition in AD transgenic 
mice [224]. Another study showed that cleaved 
fragments of PICALM were reported to be 
enhanced in AD (LOAD and EOAD) brains 
contrasting to controls where expression was 
demonstrated   in neurons, microglia, and 
colocalized with neurofibrillary tangles only, and  
no colocalization with aggregated Aβ was 
detected [226]. Aβ-induced toxicity in a yeast 
model is stimulated by PICALM [227]. The PICALM 
gene was first recognized in studies of 
myelogenous leukemia being the fusion partner of 
AF10 in a chromosomal translocation which is 
expressed in acute myeloid leukemia, acute 
lymphoblastic leukemia, and malignant lymphoma 
(10;11)(p13;q14) [228].Meyerholz and colleagues 
have reported that PICALM is connected with the 
alpha-appendage domain of the AP2 adaptor 
through the three peptide motifs 420DPF, 375DIF, 
and 489FESVF showing less effect with the amino-
terminal domain of the clathrin heavy chain [229]. 
The levels of PICALM were enhanced in the brain 
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of an amyloid mouse model of AD in contrast to 
wild-type mice [230].Although In the PICALM gene, 
Schnetz-Boutaud et al. (2012) became unable to 
introduce new variants after sequencing the gene 
in 48 cases and 48 controls, it was found that a 
previously described splice variant in LD with the 
GWAS hit could develop a causal function 
[231].Ferrari et al. (2012) introduced several rare 
coding variants in the PICALM regions, among 
them none was correlated with risk of AD 
[232].The relationship of reduced LOAD risk with 
the SNPs 5’ to PICALM rs3851179 and rs541458 is 
introduced [157,160,199]. In a study of predicted 
pathogenicity of nonsynonymous SNPs in PICALM, 
one SNP, rs12800974 (T158P) is supposed to show 
deleterious effect [179]. PICALM-deficient mice do 
not show any neurologic activities whereas mice 
exhibiting nonsense point mutations in the PICALM 
gene have implicated in abnormal hematopoiesis 
and iron metabolism involving in APP processing 
[233]. PICALM alters synaptic vesicle fusion to the 
presynaptic membrane through VAMP2 trafficking 
[221] whereas impaired clathrin-mediated 
endocytosis is observed with the deletion of the 
PICALM homolog AP180 in Drosophila and yeast 
[234-235].PICALM inscribes clathrin and adaptor 
protein complex 2 (AP2) to the cell membrane by 
providing valuable function in the determination of 
the amount of membrane which may be recycled 
to influence clathrin cage size [236].  
9. SORL1 
Sortilin-related receptor L (SORL1) belongs to 
member of the Vsp10p domain receptor family 
which is located on chromosome 11q23.2 encoding 
a 2,186-amino acid polypeptide [237]. In addition, 
SORL1 contains homology to the RAP binding 
receptor gp95/sortilin [238] implicated in vesicle 
trafficking from the cell surface to the Golgi-
endoplasmic reticulum [237]. There is also evidence 
that SORL1 plays crucial role for the processing of 
APP by presenilins and the production of beta-
amyloid [239]. Being composed of five type I 
transmembrane receptors, SORL1 was originally 
introduced as an AD risk gene in candidate-based 
approaches [237,240]. It binds lipoproteins, 
including APOE-containing particles for modulating 
their uptake through endocytotic pathways 
[237].Again, SORL1 attaches to lipoproteins, 
including APOE-containing particles for altering 
their uptake by endocytotic pathways [237]. 
Recent meta-analysis of one observation has been 
reported a significant link between clusters of 

polymorphisms in SORL1 and AD in both 
Caucasians and Asians [241]. A GWAS in 74,046 
individuals has shown that rs11218343 near SORL1 is 
linked with decreased levels of AD risk [199].On the 
other hand, SORL1-deficient mice have been 
reported to contain elevated Aβ levels [242], 
whereas SORL1 mRNA expression is shown to 
provide reduced labels of risk in brains with AD 
[242-244]. 
10. Tau 
Tau is a phosphoprotein with starring activity in 
the stabilization of microtubules, exhibiting vital 
roles for cytoskeletal support and intracellular 
transport of organelles, secretory vesicles, and 
other substances such as neurotransmitters. The 
location of the  microtubule-associated  protein  
tau  gene  (MAPT)  is on  chromosome  17  of  the  
human  genome  which is expressed as  six  
isoforms  of  the  tau  protein  in  adult  human 
brain  (central  nervous  system;  CNS),  but  not  in  
the  peripheral  nervous  system  (PNS) [245- 246]. 
These  isoforms  develop  from the  alternative  
splicing of exons 2, 3, and 10 of the 16 exons within  
MAPT, whereas exons 2 and 3 express a 29-  and 
58-amino acid  sequence,  respectively,  as well as  
exon  10  expresses  an additional  microtubule-
binding  domain resulting zero,  one,  or  two  N-
terminal  repeats  and three  or  four  C-terminal  
microtubule-binding  domains  (3R or  4R  tau) 
[246]. The  longest  (2N4R)  and  shortest  (0N3R)  
isoform is composed of 441  and  352  amino  acids,  
respectively  as well as the  N-terminal projection  
domain  of  tau  (2N4R)  is composed of a  44-
amino  acid glycine-rich  sequence  and  residues  
45–102  encompass  two highly  acidic  regions  (N1  
and  N2-domains) [247-248]. Simply, tau is the 
cardinal constituent of neurofibrillary tangles, 
which are distributed in copious in neurons of the 
central nervous system (CNS) but are also 
distributed at very low levels in CNS astrocytes and 
oligodendrocytes predicting of high AD 
progression [249]. 
More than 30 mutations of tau in the chromosome 
have been verified, among them  17 have been 
recognized in frontotemporal dementia, linked 
with Parkinson's disease [250] .However, the 
correlations between tau mutations with AD are 
poorly understood. Nevertheless, induced levels of 
both phosphorylated and total tau in the CSF link 
up with reductions in scores on cognitive 
examinations [251]. Being phosphorylated, tau 
proteins result defective and no longer stabilized 
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microtubules. In addition, hyperphosphorylated 
tau becomes insoluble exhibiting lack of affinity for 
microtubules and self-correlation into paired 
helical filament structures [252-253]. Again, the 
Drosophila orthologs to CD2AP, FERMT2, and 
CELF1 were introduced as key regulators of tau-
mediated toxicity [163]. Being cytotoxic [254], 
aggregates of abnormal tau molecules impair 
cognition [255, 256]. However, tau has been 
correlated with induced oxidative stress, impaired 
protein-folding function in the endoplasmic 
reticulum, and deficient proteasome-mediated 
which is also linked with autophage-mediated 
clearance of damaged proteins in AD [257-258]. 
The elevated levels of phospho-tau amino acids 
(T181, T231) and total tau in the CSF are shown to 
represent a biomarker test with good accuracy to 
predict incipient AD in patients with mild cognitive 
impairment [259]. Double mutant (tau/APP) 
transgenic mice demonstrated a neurofibrillary 
tangle pathology which was substantially induced 
in the limbic system and olfactory cortex [260]. 
Moreover, Aβ-elevated degeneration of cultured 
neurons and cognitive deficits, which are well-
known as typical symptoms of AD in experimental 
models, need the presence of endogenous tau 
[261-262]. Number of neurofibrillary tangles in cell 
bodies are induced a five-fold through the injection 
of Aβ42 into the brains of mutant tau transgenic 
mice [263]. Recent CSF GWASs have exhibited that 

APOE genotype generates an A-independent 
effect on CSF tau levels, indicating that APOE could 
regulate tau accumulation in the brain [264], while 
the release of tau from the cell may be altered by 
synaptic activity [265-268]. Expression of the 
Drosophila ortholog of BIN1 is attenuated with 
reduced tau-modulated toxicity in a Drosophila 
model [269]. 
11. TREM2 
TREM2 is one type of transmembrane receptor 
protein which is distributed on myeloid cells to 
regulate phagocytosis and suppress inflammation 
reactivity [270] including microglia, monocyte-
derived dendritic cells, osteoclasts, and bone-
marrow-derived macrophages [271]. The location 
of TREM2 is on chromosome 6q21.1 which has been 
reported to exist as three transcripts. Among 
them, the longest transcript is trafficked to the cell 
surface encoding a transmembrane protein 
[271].Then, binding with several ligands, it interacts 
with DAP12 (also known asTYROBP) and intra-
cellular signaling through TYROBP is transduced by 

TREM2. But the natural ligands of TREM2 have to 
remain speculative, upon ligand binding TREM2 
links with TYROBP to alter downstream signaling. 
Again, the transmembrane domain is observed to 
be lost from the shorter transcripts. Although 
these transcripts have not been experimentally 
recognized, they are anticipated to become 
mystery [271]. Variants in the TREM2 region are 
linked with cerebrospinalfluid tau levels [264] 
whereas after trafficking to the cell surface, TREM2 
is split by γ-secretase [272]. Through exome and 
genome sequencing, an excess of variants in exon 
2 of TREM2 was introduced in AD patients. R47H 
was recognized in GWAS by imputation and further 
observation after direct genotyping. R47H has 
been observed to mediate risk of early-onset AD in 
a French population [273], whereas R47H has been 
found to be replicated in a Spanish population 
from the USA [274], a Columbian family study with 
frontotemporal and AD dementia [275] in the 
Cache County study [276], in a Spanish/Catalan 
study [277], a Belgian study [278], and an African-
American sample [279].  But, the R47H variant was 
not recognized in a Chinese population of 1133 
cases and 1157 controls and four variants detected 
in TREM2 were not correlated with LOAD [280]. 
Bertram, Parrado, and Tanzi (2013) verified the 
results observed by Jonsson, but with a lower 
effect size, suggesting a “winner’s curse,” and 
shown to the very low population attributable 
fraction and the inappropriateness of a 
comparison of the effect size of TREM2 with that 
of the APOE εallele [281-283]. TREM2 mutation key 
regulators with AD have more extensive brain 
atrophy in comparison with noncarriers with AD 
[284]. The most common variant in populations of 
European descent, R47H (rs75932628), has 
recognized to enhance LOAD risk approximately 
two fold [275, 285-288]. Subsequent studies found 
that heterozygous and homozygous mutations 
inTREM2 have been reported to correlate with 
autosomal recessive forms of dementia with bone 
cysts and fractures resulting clinically distinct 
disorders [285,289-291]. Numerous studies have 
shown that autosomal recessive mutations in 
TREM2 have been introduced  in a family with 
frontotemporal dementia–like syndrome without 
bone involvement [30] whereas rare, missense 
mutations in TREM2  stimulates LOAD risk which is 
suggested by gene-based burden tests . Another 
recent study has been shown that TREM2 R47H 
and TREM2 R62H are correlated with AD risk [278].
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12. Phospholipase D3 (PLD3)  
PLD3 is defined as nonclassical phospholipase 
which is situated at chromosome 19q13.2 without 
any prominent catalytic activity [285]. Although its 
characteristics are poorly known, it is found to be 
linked with AD risk splicing into 25 predicted 
transcripts [292]. PLD3 is highly distributed in 
neurons in the hippocampus, entorhinal cortex, 
and frontal cortex. In vitro, coexpression of PLD3 
with APP generates significantly reduced 
extracellular Aβ levels by an unknown mechanism 
[11], while knockdown of PLD3 results induced 

levels of A  [292]. A correlation between PLD1 and 
PLD2, classical phospholipases, and APP 
metabolism has been observed [293-
294].Catalyzing the hydrolysis of 
phosphatidylcholine, classical PLD proteins have 
been found to generate phosphatidic acid, which 
performs as a regulator for clathrin-mediated 
endocytosis resulting the involvement in AD 
pathogenesis [293- 296].  
13. CD33 
A key member of the immunoglobulin superfamily 
called CD33 is positioned on chromosome 19q13.3 
[210] by encoding a member of the sialic acid-
binding immunoglobulin-like lectins (Siglec) family 
of receptors, and distributed on myeloid cells and 
microglia [297-299].CD33 genes span 14.2kb by 
containing seven exons [300], whereas two mRNA 
species of 1.4-1.5kb and 1.6–1.8kb have been 
reported through alternate splicing of the 
transcript [301]. The length of the CD33 protein is 
364 amino acids having a mass of approximately 
40kDa [302] which contains two immunoglobulin-
like domains, a transmembrane region and 
acytoplasmic tail that has two potential ITIM 
sequences [303].Being a member of family of cell-
surface receptors, CD33 plays an important role as 
an adhesion molecule to modulate sialic acid-
dependent binding to cells [303-304] whose main 
function is involved in the peripheral circulation on 
monocytes and myeloid progenitor cells [128–
131,299,305-307]. As, CD33 may act as an inhibitory 
receptor by colligation with CD64 on myeloid cells 
[308], sialic acid binding activates CD33, resulting 
monocyte inhibition through immunoreceptor 
tyrosine-based inhibitory motif domains [309]. 
CD33 also modulates clathrin-independent 
receptor-mediated endocytosis [310] where 
splicing of CD33 regulates microglial activation 
[297]. CD33 is normally distributed on the surface 
of myeloid progenitor cells, mature monocytes, 

and macrophages, and is involved in inhibition of 
cell activity where high CD33 brain expression has 
been correlated with AD status [161,298]. Two 
isoforms have been identified, between them one 
contains the seven exons of the genes, and other 
contains the genes without the second exon 
encoding the V-set immunoglobin domain which is 
key regulator for the sialic acid-binding activity 
[311].CD33 mRNA expression is specifically 
increased in microglia, and expression in autopsy 
brain tissue is associated with more advanced 
cognitive decline [161,298]. Aβ phagocytosis is 
inhibited in immortalized microglial cells 
expressing CD33, and this effect is abolished in 
cells expressing CD33 lacking exon 2 [298]. The 
minor allele of rs3865444 is associated with 
reduced CD33 mRNA expression and insoluble 
Aβ42 in brains with AD [298]. As, CD33-positive 
immunoreactive microglia have been implicated 
with insoluble Aβ42 and plaque burden in brains 
with AD [161] .CD33 may function in Aβclearance 
and other neuroinflammatory pathways which are 
regulated by microglia in the brain.The GWAS SNP, 
rs3865444, was found to be correlated with the 
surface expression of CD33 on circulating 
monocytes [312] .In LOAD GWAS, the identified 
SNPs proximal to CD33(e.g., rs3865444) were 
observed to lower LOAD risk [158-159, 287] 
whereas the SNP rs3865444 is related to stimulate  
CD33 lacking exon 2 [297] and rs12459419 alters 
exon 2 splicing efficiency [297]. Finally, Malik et al. 
and Raj et al. detected a correlation between the 
AD risk allele of rs3865444 and greater expression 
of the CD33 isoform which carries the Ig V-set 
domain which could describe the relation with AD 
[297,313].  
14. Complement Receptor 1 (CR1) 
Being a member of the receptor of complement 
activation (RCA) family, Complement receptor 1 
(also known as CD35, C3b/C4b receptor) exhibits 
complement response, as well as it is distributed 
on phagocytic cells, such as erythrocytes, 
leukocytes, choroid plexus, microglia, and splenic 
follicular dendritic cells leading to the ingestion 
and removal of complement-activated particles 
[314-315]. In addition, the CR1 protein is a 
monomeric type I membrane glycoprotein which 
plays a significant role in optimizing the main 
system for processing and clearance of 
complement opsonized immune complexes and 
modulates cellular binding to particles, those are 
marked with activated complement [314]. The 
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location of CR1 is on chromosome 1q32 in a cluster 
of complement-related proteins and encodes the 
CR1 protein. CR1 encodes four co-dominant alleles 
which are different in sizes and undergoes multiple 
genetic duplication and deletions events [316]. The 
most common CR1 isoforms are the “F” and “S” 
allotypes of 250 and 290kDa, respectively where 
the size difference is based on the inclusion of a 
long homologous repeat of 40–50kDa [198]. As, 
CR1 acts as the human receptor for C3b and C4b 
complement cleavage fragments [317], the 
relationship of an increased risk of developing late 
onset Alzheimer’s disease with certain alleles of 
this gene have been statistically developed [199]. 
On the other hand, CR1 is a negative regulator of 
the complement cascade acting through immune 
adherence and phagocytosis, as well as 
suppressing both the classic and alternative 
complement pathways [314]. 
Moreover, in GWAS, SNPs in CR1 were recognized 
in LOAD [157- 160,199] whereas the connection of 
variants in the CR1 locus with neuroimaging 
measures in AD [177] and neuritic plaque burden in 
brains with AD [163] was observed. The SNP 
rs6656401 tags several SNPs which are noticeably 
correlated with AD risk, and a second SNP called 
rs3818361, is related with LOAD risk in APOEε4 
carriers [199]. CR1 mRNA expression in autopsy 
brain tissue is also correlated with developed 
cognitive decline [161]. It is shown that CR1 
provides high-expression and low-expression 
alleles [311]. On the other hand, subjects who are 
homozygous for the low-expression CR1 allele 
contain 200 copies of CR1 per cell, whereas 
subjects who are homozygous for the high-
expression allele carry nearly 1400 copies per cell 
[316]. Higher CR1 protein expression is connected 
with a higher clearance rate of immune complexes 
[318-319]. 
Brouwers et al. (2012) and Hazrati et al. (2012) have 
recognized a sub region of CR1 which carries two 
SNPs related with risk of AD and with Aβ42 levels 
in the cerebrospinal fluid. Those signals were likely 
modulated by a copy number variation (CNV) 
connected with risk of AD. They mediate levels of 
two particular isoforms of CR1, CR1-F and CR1-S and 
the latter carries an extra binding site for C3b/C4b. 
Binding to Aβ, C3b and C4b could take part in Aβ 
clearance [320-321]. The level of CR1 is lessened in 
pathological conditions such as systemic lupus 
erythematosus (SLE), HIV infection, some 
hemolytic anemias, and other conditions featuring 

immune complexes [322,323]. A coding variant of 
CR1 is related with cognitive decline which was 
introduced by Keenan et al. (2012) but this 
observation could not be repeated in a second 
cohort [324-325]. 
15. AKAP9:  a kinase (PRKA) anchor protein 9 
 The location of AKAP9 is on chromosome 7q21.2 
and distributed in the hippocampus, cerebellum 
and the cerebral cortex [91]. Logue  et  al. reported 
the exhibition of AKAP9 in seven unrelated African-
Americans  with  familial  AD, and two rare  variants  
(rs144662445  and  rs149979685,  with  a  MAF of  
0.43%  and  0.36%  respectively depending on the 
Exome Variant  Server  database  
(http://evs.gs.washington.edu/EVS))[326]. In 
addition, in-silico analyses designate that 
rs144662445 does not contain a greater impact on 
protein activities depending on predicting 
algorithms, but rs149979685 could modify the role 
of the encoded protein. A scaffold protein is 
encoded by AKAP9 with physical attachment of 
type I protein  phosphatase  (PP1) and  cAMP-
dependent  protein  kinase  (PKA)  to  the  N-
methyl-D-aspartate  (NMDA) receptors to 
modulate channel  activity  [327]. 
16. CD2 Associated Protein (CD2AP) 
CD2-associated protein (CD2AP) is a scaffolding 
protein which is located on chromosome 6p12 
encoding CD2 associated protein [328]. The protein 
is composed of 639 amino acids having deduced 
molecular mass of approximately 70kDa [329]. In 
addition, it plays crucial role in cytoskeletal 
reorganization and intracellular trafficking [330]. 
The gene is ubiquitously distributed in adult and 
fetal human tissues as an approximately 5.4kb 
transcript [329].However, direct interaction of 
CD2AP with proteins is involved in cytoskeletal 
organization [328] which leads to cell–cell 
interactions [331-332] and endocytosis [333-334]. 
On the other hand, phosphorylation of tyrosine in 
response to extracellular stimuli such as growth 
factors or cell-cell interaction, CD2A subsequently 
accelerates vesicle formation [329]. In CD2AP, 
SNPs rs9296559 and rs9349407 are linked with 
increased LOAD risk [158-159], whereas 
CD2APrs9349407 is connected with neuritic plaque 
burden in brains with AD [163]. However, the SNP 
rs10948363 was most recently recognized through 
a meta-analysis of 74,046 individuals [160]. Again, 
the correlation of AD risk variant with greater 
neuritic plaque burden was reported [163], 
whereas, a functional screening of AD candidate 
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genes in drosophila models detected the ortholog 
of the human CD2AP as a modulator of tau toxicity 
[335]. As, CD2AP is needed for synapse formation 
[330], it correlates with Cbl, endophilin, and 
synaptojanin. On the other hand, CD2AP is involved 
in mediating vesicular trafficking to the lysosome 
which is suggested by the observation of the 
impairment of lysosomal function in cells from 
CD2AP-deficient mice [333]. Here, ligand binding of 
CD2AP initiates protein segregation, CD2 
clustering, and cytoskeletal polarization [330], as 
well as the CD2AP mutation in the splice acceptor 
region of exon 7 was correlated with primary focal 
segmental glomerulosclerosis [170]. No stable 
protein has not been recognized from the variant 
allele for the transcription, it suggests that the 
disorder may be caused by haplo insufficiency of 
CD2AP [170]. 
17. MS4A 
The MS4A (membrane spanning four domains, 
subfamily A) gene cluster is comprised of 16 genes 
clustered in a 600 kb region of chromosome 11q12 
with variable expression in several tissues [336-
337]. In addition, it exhibits a suspected role in 
immune cell functions [337]. Among them, the 
most important three members named MS4A4A, 
MS4A4E, and MS4A6E are correlated with AD by 
GWAS analysis [158,338-339].On the other hand, 
MS4A genes are distributed in myeloid cells and 
monocytes encoding proteins with four or more 
transmembrane domains and also contain 
cytoplasmic domains at the amino and carboxyl 
termini, which are typically encoded by distinct 
exons.The characterization of this gene family is 
poorly recognized. Structurally and functionally 
MS4A is as like as CD20 - the high-affinity IgE 
receptor beta chain [337,340], where CD20 
regulates calcium influx after activation of B-cell 
antigen receptor [341]. The linkage between 
disequilibrium and genomic structure in the region 
prevents assignment of the GWAS Signal to a 
precise gene.Moreover, an MS4A4A mRNA has 
been found to encode a 205-amino acid protein 
with a conserved phosphorylation site at the 
intracellular loop in one observation [336]. Again, 
in other observation, an MS4A4A mRNA encodes a 
predicted peptide with 220 amino acids [337].The 
length of MS4A4E is 220 aminoacids in length 
where it is 76% identical to MS4A4A for sharing a 
high degree of homology with the transmembrane 
and both intracellular domains [337].However, the 
MS4A4E gene is composed of seven exons that 

spans more than 23kb [337], whereas MS4A6E is 
made of four exons to span only 5kb [337]. 
The SNPs rs983392 (nearMS4A6A) and rs670139 
(near MS4A4E) were recognized as AD risk alleles 
in GWAS in LOAD [158-160],  where the SNP 
rs983392 is related with reduced LOAD risk and 
rs670139 is are engaged to enhance LOAD risk. The 
GWAS signal extends MS4A4A and MS4A6A, 
where recent studies have detected a correlation 
of the GWAS SNPs with MS4A4A brain expression 
[205] and MS4A6A blood and brain expressions 
[342].These observations have confirmed 
engagement of both genes in AD. MS4A6E mRNA 
expression and rs670139 are correlated with more 
advanced tangle and plaque stages in AD brain 
tissue [161]. 
Simply, genetics of AD i.e., location, distribution, 
function,  single nucleotide polymorphisms, 
potential effects on APP and Tau etc. of genes 
affecting AD are shown in table-1. 
Conclusion: 
From a genetic slant, Alzheimer’s disease is an 
elusive heterogeneous disorder with both familial 
and sporadic forms exhibiting tremendous 
challenge to public health and the health care 
system with enormous financial burdens. 
Numerous epidemiologic researches have 
manifested ample evidences that expanding 
genomic roadmap of Alzheimer’s disease with 
many genes and with their common and rare 
variants exhibit a significant role and 
comprehensive understanding in the development 
and progression of AD to provide new 
opportunities and insights into therapeutic targets 
and strategies. Although whole-genome and 
whole-exome sequencing studies in large data sets 
are recognized, the exact genetic influences of this 
costly and devastating illness are poorly 
acknowledged with structurally and functionally 
many unknown genes to understand the 
mechanisms underlying AD . Potentially, 
forthcoming observations of AD with approaching 
studies and analysis of genes and existing evidence 
of wealth of novel genomic data will provide novel 
therapeutic approaches to delay and prevent AD 
from bench to the clinic. 
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Figure 1: Numerous variants of genes involving in Alzheimer’s disease risk. 
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Table 1: Genetic aspects of Alzheimer’s disease 

Gene 
 

Location Distribution Function Diseas
e 

SNPs 

Potential 
effects 
on APP 

and TAU 

Pathways Refere
nce 

APOE chromosome 
19q13.2 

Liver, brain, 
and 

macrophages. 
Concentrations 

of ApoE- 
in plasma: 40–

70mg/ml(appro
x.) and in 

cerebrospinal 
fluid (CSF): 3–

5mg/ml 
(approx.) 

Channelize lipids 
and cholesterols 
throughout the 
body, mediates 

the binding, 
internalization, 
and catabolism 
of lipoproteins 
in cell, glucose 

metabolism, 
lipolytic enzyme 

activation & 
several 

mitochondrial 
function. 

rs4293
58 and 
rs7412 

A 
clearance 

Lipid 
metabolism 

2, 
16,17,2

0-
24,26, 
29, 37-
38,41 

APP chromosome 
21q21 

Neurons and 
Astrocytes 

-Invoved in 
mitochondrial 

dysfunction and 
neural plasticity 

-Acts as a 
Clinical 

Immunology 
and 

Immunopatholo
gy regulator of 

synapse 
formation. 

Multip
le 

Cleavage 
yields 

A 
 

APP 
processing 

73-
76,90-

94 

PSEN1 
and 

PSEN2 

chromosome 
14q24.3 and 

chromosome 
1q31-q42 

Cell surface, 
golgi, 

endoplasmic 
reticulum, and 
mitochondria 

Constituent of 
catalytic 

subunit of 
gamma-

secretase 
complex; 

proteolytic 
cleavage of 

integral 
membrane 

proteins 
 

Multip
le 

Cleaves 
APP 

APP 
processing 

21,129-
130 

ABCA7 chromosome 
19p13.3 

Neuron Cholesterol 
metaboliam 

rs3764
650 

Cleaves 
APP 

APP 
processing 

152-155 

http://www.sciencedirect.com/science/journal/00901229
http://www.sciencedirect.com/science/journal/00901229
http://www.sciencedirect.com/science/journal/00901229
http://www.sciencedirect.com/science/journal/00901229
http://www.sciencedirect.com/science/journal/00901229
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BIN1 chromosome 
2q14.3 

Brain and 
muscle 

Endocytosis 
of synaptic 

vesicles 
 

rs7443
73 

Moderate
s tau 

toxicity 
 

Synapse 
function 

171-175 

CLU chromosome 
8p21.1 

Whole 
body,especially 

brain 

Apoptosis, 
complement 

regulation, lipid 
transport, 
membrane 

protection, and 
cell-cell 

interactions 

rs11136
000, 

rs9331
888, 

rs2279
590, 

rs7982
, and 

rs7012
010 

A 
clearance 

 

Immune 
response 
and lipid 

metabolism 

192-
196 

EPHA1 chromosome 
7q34 

Brain and 
neuron 

Brain and neural 
development; 
angiogenesis, 

cell 
proliferation, 
and apoptosis 

 
 

rs11771
145 

 
 

--- 

Immune 
response 

and neural 
development 

210 

PICLA
M 

chromosome 
11q14.2 

Neuron AP2-dependent 
clathrin-

mediated 
endocytosis 

 
 

rs3851
179 

APP 
traffickin

g 

and A 
clearance 

 

Synapse 
function 

and 
endocytosis 

21,174,
222-
224 

SORL1 
 

chromosome 
11q23.2 

Cell surface to 
the Golgi-

endoplasmic 
reticulum 

Alters 
endocytosis of 

the lipids 
 

rs11218
343 

APP 
traffickin

g 
 

Lipid 
metabolism, 

synapse 
function, 

and 
endocytosis 

21,237 

Tau chromosome  
17 

Brain Stabilization of 
microtubules, 
intracellular 
transport of 
organelles, 
secretory 

vesicles, and 
other 

substances such 
as 

neurotransmitte
rs 

Multip
le 

 
 
 

-------- 

 
 
 

------ 

245-
246 



PhOL     Tajmim, et al.    49 (pag 14-49) 
 

 
http://pharmacologyonline.silae.it 

ISSN: 1824-8620 

TREM2 chromosome 
6q21.1 

Myeloid cells , 
microglia, 
monocyte-

derived 
dendritic cells, 

osteoclasts, 
and bone-
marrow-
derived 

macrophages 

Regulates 
phagocytosis 
and suppress 
inflammation 

reactivity 

rs7593
2628 

A 
clearance 

Immune 
response 

270-
271 

PLD3 chromosome 
19q13.2 

Neuron Catalyzing the 
hydrolysis of 

phosphatidylch
oline 

rs1459
99145 

APP 
traffickin

g 
and 

cleavage 
 

Unknown 285 

CD33 chromosome 
19q13.3 

Myeloid cells 
and microglia 

Moderates sialic 
acid-dependent 
binding to cells 

 

rs3865
444 

A 
clearance 

Immune 
response 

210,29
7-299 

CR1 chromosome 
1q32 

Phagocytic 
cells, such as 
erythrocytes, 
leukocytes, 

choroid plexus, 
microglia, and 

splenic 
follicular 

dendritic cells 

Alters cellular 
binding of 
immune 

complexes that 
activate 

complement 
 

 A 
clearance 

Immune 
Response 

314-
316 

AKAP9 chromosome  
7q21.2 

Hippocampus,  
cerebellum  

and the 
cerebral cortex 

 
 
 

-------- 

rs1446
62445  

and  
rs1499
79685 

 
 
 

---------- 

 
 
 

-------- 

91,326 

CD2AP chromosome 
6p12 

Adult and fetal 
human tissues 

Cytoskeletal 
reorganization 

and intracellular 
trafficking 

rs9349
407 

Mediates 
tau 

toxicity 
 

Synapse 
function 

and 
endocytosis 

328 

MS4A chromosome 
11q12 

Myeloid cells 
and monocytes 

Signal 
transduction 

rs6109
32,rs6
70139 

 
------- 

Immune 
response 

21,336-
337 

 

 
 


