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Abstract 

Thanks to the advanced hardware and software technologies present today, we are closer to the 
introduction of new methods of medical imaging analysis that promise to improve the quality of care 
for patients and can bring improvements in the work organization by making some worksteps more 
efficient. Radiomics is a new and constantly evolving field of research that makes extensive use of 
artificial intelligences. The number of studies concerning this topic is continuously increasing 
demonstrating a growing interest in this field of study and its promising prospects.  
In This review we briefly describe the steps involved in radiomic analysis, the current state of this 
technology, its limitations, its possible uses and the changes it may bring with it as well as  the 
possibilities that it will lead to the figure of the medical doctor. 
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Introduction 

Computing power has been constantly increasing 
during the years and software development 
followed this trend becoming a complex study field. 
Currently the growing size of any kind of digital 
database allow for extraction of useful information 
and many researching fields are taking advantage of 
this implementing artificial intelligence algorithms. 

Artificial intelligence is a very active study field 
nowadays and AI algorithms are being implemented 
with success almost everywhere: from industrial 
maintenance scheduling to face recognition, to 
autonomous driving, to marketing and many other 
fields. Therefore, artificial intelligence algorithms 
will naturally be implemented in future medicine in 
order to increase treatments quality and efficiency. 

Computer aid is crucially involved in modern 
diagnostics and the number of diagnostic exams is 
increasing year over year allowing the creation of 
big imaging databases that can be used to extract 
new useful information that can result in an 
important step forward to precision medicine. This 
process of information extraction from diagnostic 
imaging through artificial intelligence acquired 
during the years the name of Radiomics. 

Radiomics term was firstly used in 2012 [1] defined 
as “extraction and analysis of large amounts of 
advanced quantitative imaging features with high 
throughput from medical images” [1] [2]. This new 
field of study uses Artificial Intelligence algorithms 
on multiple levels in order to gain quantitative 
parameters that can be correlated to clinical, 
prognostic and therapeutic information, in order to 
improve the patient's outcome. 

The number of scientific publications associated 
with the word radiomics has grown steadily over the 
years, going from 3 in 2012 to 1479 in 2020 on 
PubMed research results. This study aims to review 
the current state of this technology and its 
prospects, along with the changes that may occur in 
clinical practice with its introduction. 

 

Radiomic Analysis Process 

Radiomic analysis is a complex procedure subject to 
numerous variations, which can be divided into key 
points that we will briefly describe here. 

 

Image Acquisition 

Radiomic analysis start with image acquisition. 
In Radiomics, image acquisition respects the 
fundamental rules of the exam with particular focus 
on standardization. The main diagnostic 
investigations that lend themselves to radiomic 
analysis are CT, MRI, PET and SPECT as well as 
hybrid methods such as CT-PET and CT-SPECT due to 
the high standardization, high spatial resolution and 
the characteristic of being operator-independent. 
[3-7] Artificial intelligence algorithms must be 
trained to recognize variations in the image; 
therefore, it is necessary to minimize variations due 
to acquisition parameters. For this reason, during 
the acquisition, it is necessary to follow the 
acquisition parameters specified in the dataset to 
obtain reliable results: for example, it will be 
necessary to consider the acquisition time and the 
type of tracer used in the PET and SPECT images, or 
the thickness of the layer and others exposure 
parameters (kilovolts, milliamps, scanning time and 
pich factor) as well as the characteristics of any 
contrast media used in CT and MRI investigations. 
To extract the functionalities in a stable and 
reproducible way on multiple centers, a unified set 
of image acquisition protocols is therefore desirable 
in order to have an archive as homogeneous as 
possible and to ensure that the image we intend to 
analyze is adherent to the archive to avoid 
interpretation problems by the algorithm. 

 

Signal value normalization 

One of the cornerstones of radiomic analysis is the 
production of numerical, quantitative indicators 
resulting from more or less complex mathematical 
processing of numerical values associated with the 
voxels of the image, therefore it is necessary to 
standardize the values of the voxels [8]. The 
presence on the market of different models and 
manufacturers of equipment may introduce 
variations that can invalidate the result of the 
analysis, therefore it is necessary to adapt the image 
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to be analyzed to the characteristics required by the 
starting dataset. This can be done manually using 
the appropriate image reconstruction programs or 
automatically using special algorithms in setting up 
the image archive. 

 

ROI segmentation 

Once the data has been collected and organized, a 
ROI (Region of Interest) will be defined and taken 
into consideration for radiomics analysis. The 
delineation of the margins of the ROI can be defined 
manually, but the need for a high consistency to 
have a reliable result, combined with the speed of 
the automatic process, makes the automatic 
segmentation (Autosegmentation) preferable. Self-
segmentation based on artificial intelligence has had 
interesting developments in recent years thanks to 
the experience gained with the different methods 
of analysis of the data [9]. Recently, efforts to 
develop self-segmentation solutions using deep 
learning models have produced promising results 
[10,11]. The effectiveness of self-segmentation is 
very important, since the manual modification of an 
ineffective self-segmentation, as often happens, for 
example, in tumors with poorly defined margins, 
introduces additional variability which, albeit 
minimal, can invalidate the result of the analysis. The 
adoption of automatic methods in the radiomics 
workflow should result in more solid radiomics 
results, since the variability of the observer will be 
mitigated and the segmentation time will be 
significantly reduced compared to manual or semi-
automatic segmentation. [11] 

 

Analysis and Feature Extraction 

Feature Extraction represents the actual analysis of 
the ROI content, during which the numerical values 
of the individual voxels and the relationships 
between adjacent voxels are analyzed using 
complex mathematical calculations to obtain 
numerical data from the image, whether simple 
(First Order) or reworked (Higher Order) [8]. These 
are the Image-Based Biomarkers (IBB), [12] which 
allow, through statistical inference, to associate the 
morphology of the image and the data derived from 
it to its biological equivalent or to prognostic 

probabilities, thus providing discrete, quantifiable 
and objective data that can provide the doctor with 
an easier classification of the patient in categories of 
treatment, in order to improve the outcome. [13]  
This process is carried out by training the algorithm 
analyzing the numerous images in the archive 
(Dataset) and validation of the result, needed to 
test the algorithm operation using a second image 
archive to verify the results achieved. A great 
number of features is extracted from the images, 
however many carry redundant information 
therefore a selection of the most useful ones is 
necessary [14]. 

 

Image Based Biomarkers 

A biomarker is "a characteristic that is objectively 
measured and evaluated as an indicator of normal 
biological processes, pathogenic processes or 
pharmacological responses to a therapeutic 
intervention" [8]. Image based biomarkers consist 
of both qualitative biomarkers, which require a 
trained eye interpretation, and quantitative 
biomarkers based on mathematical definitions. 
Several authors have tried to divide the numerous 
radiomic features into classes [8,15], however no 
common agreement has yet been reached on their 
subdivision. For the purpose of this review we will 
briefly describe the different classes. 

First Order features are often classified as 
morphological features that describe the geometric 
aspects of a region of interest (ROI), such as area 
and volume, but also include more complex 
parameters. Some examples of first level 
characteristics are: Shape, Size, Localization, 
Sphericity, Asphericity, Major Axis Length, Minor 
Axis Length, Degree of Vascularization, 
Inhomogeneity of Margins, Area Density, Volume 
Density, Compactness, Symmetry, Repeated 
patterns. 

Second order features include features obtained 
from the analysis of the quantitative value of to the 
single voxel, that is, the smallest unit making up the 
image, returning the distribution of the latter in the 
form of histograms or numerical data resulting from 
complex calculations. Some examples of second 
level characteristics are: Average, Maximum, 
Minimum, SUVpeak, SUVmax, Standard Deviation, 
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Kurtosis, entropy, Energy, Uniformity, Variance, 
Area Under the Curve (AUC). 

Third order features are derived from the analysis of 
the correlation between neighbouring voxels. This 
category contains dozens of parameters and can be 
divided into several sub-categories based on the 
degree and type of processing that is carried out. 
This category also includes the Features derived 
from signal filtering, with the possibility of 
eliminating disturbing factors such as background 
noise or the signal deriving from structures close to 
the lesion. Among the main analyzes of this 
category used in Radiomics we have: Gray Level Co 
Occurrence Matrix (GLCM), Gray-Level Run Length 
Matrix (GLRLM), Gray-Level Size Zone Matrix 
(GLSZM), Gray-Level Distance Zone Matrix (GLDZM), 
Neighborhood Gray-Tone Difference Matrix 
(NGTDM), Wavelet Transform, Laplace Transform, 
Fourier Transform. 

 

Model Building 

Once the extraction of the features has been 
finalized and the most useful ones selected, it is 
possible to create radiomic models using a wide 
range of machine learning algorithms to find 
statistical associations between extracted 
characteristics and diagnostic, predictive and 
prognostic data. These features with significative 
associations with outcome are the Image Based 
Biomarkers (IBB).  A Large set of features highly 
associated with patient’s outcome is obtained 
through training and validation of the algorithm on 
two different datasets. Subsequently, the 
characteristics most strongly associated with the 
outcomes are selected to provide a signature of the 
pathology allowing the analysis of subsequent 
images with greater efficiency making this 
processing compatible with use in clinical practice. 

 

Artificial Intelligence and Radiomics 

In the last decade, publications containing the term 
“Artificial Intelligence" have seen an exponential 
increase, thanks to the interest developed in 
relation to the growing awareness of the potential 
associated with this research method. The definition 
of Artificial Intelligence has been constantly 

redefined during the years since the term 
"intelligence" is not itself well defined in a 
universally accepted way by the scientific 
community and because the capabilities of these 
technologies are constantly evolving. Today we 
already interact daily with artificial intelligences in 
various ways, often without realizing it: for example 
on a smartphone, in the car or while surfing the 
Internet. The study of artificial intelligence plays an 
important role in the radiomics research process, 
requiring the presence of highly specialized 
professionals in the research team. In fact, there are 
many artificial intelligence algorithms and new 
methods of analysis are introduced continuously 
thanks to the commitment that the scientific society 
has been investing in these technologies in recent 
years. For each application, an artificial intelligence 
algorithm can be more accurate or more performant 
to achieve a set goal: using different data analysis 
methods greatly influences the result of the analysis 
and it is therefore necessary to select the right 
algorithm based on the size, homogeneity and 
classification characteristics of the dataset available, 
as well as based on the task that we intend to 
entrust to the machine. 

 

Future applications 

The future applications of radiomics include 
interesting applications in the oncology field, but 
also in the cardiology field and various other areas 
such as denoising, the construction of attenuation 
maps for a precise calculation of the decay factor in 
nuclear imaging, or to increase the efficiency of 
screening programs. Virtually any medical imaging 
can be analyzed. 

 

Oncological  

Oncology is a very active research field where 
personalized treatments where personalized 
treatments are necessary to ensure the best chance 
of survival for patients. One of the major reasons for 
therapeutic failure is intratumoral heterogeneity 
[16]. With current knowledge, it is difficult to be 
sure that two tumors, staged and classified as 
molecularly identical, have the same biological 
behaviour [17]. This is because by its nature, a tumor 



PhOL     Manni, et al.    195 (pag 191-203) 

 

 
http://pharmacologyonline.silae.it 

ISSN: 1827-8620 

has a significant genetic instability that it brings to a 
high number of mutations, which follow each other 
phylogenetically and progress into distinct cell lines 
with different morphology and a behavior in relation 
to the genetic alterations they bring with them. This 
also applies to tumor metastases. This different 
behavior of the various cell populations in the 
context of the tumor mass corresponds to a 
different behavior towards the therapy [18].  

Considering that the cell is a complex functional 
ecosystem regulated by proteins, it appears evident 
that a modification of genes, their expression and 
their product, produce alterations both in the 
cellular morphology and in the of tissue 
morphology. The possibility, of associating the 
morphological characteristics of a tumor mass with 
its biological behavior, would be extremely useful in 
the decision-making process that ultimately makes 
the difference in the patient's outcome. Radiomics 
can make a great contribution in this field allowing 
for in-vivo lesion characterization before the 
anatomo-pathological analysis thus potentially 
changing the approach to the patient. [19-21]  

 

Lung Cancer  

Lung cancer is the most common malignancy in the 
general population and is the leading cause of 
cancer death worldwide [22]. In lung cancer, 
radiomics has shown potential utility in the 
characterization of the solitary pulmonary nodule 
(SPN). A solitary pulmonary nodule (defined as a 
focal opacity <3 cm in diameter) is a very frequent 
radiological finding in clinical practice and often 
poses problems of differential diagnosis [23-24]. In 
this field radiomics can help giving a reliable 
characterization of the solitary polmonary nodule 
consequently reducing the workload in radiology 
[25]. Radiomics also proves very promising in the 
non-invasive definition of EGFR mutational status: 
various studies aim to find a set of features able to 
identify a radiomic signature of the mutational state 
of the EGFR [26,27]. Non-invasive EGFR status 
characterization could be useful to identify patients 
candidates for EGFR target-therapy where 
traditional invasive characterization is ineffective or 
not possible for various reasons such as tumor 
position or size, poor health state of the patient.  

 

Breast Cancer 

Breast cancer is the most common malignancy in 
women [28]. Several studies have investigated the 
effectiveness of radiomics in various areas with 
encouraging results. [29-34] Areas of major interest 
in this field are diagnosis, non-invasive identification 
of the molecular subtype of the tumor and HER2 
and ki67 mutational status, response to treatment 
prediction, relapse predition and patient prognosis. 
[35,36] Most of the studies report good 
performance of the algorithms [37-43]. 

 

Colorectal 

Colorectal cancer It is the second most common 
cancer diagnosed in women and third most in men 
[44]. In this context, radiomics studies were carried 
out to identify the mutational status of the 
neoplasm and histochemical characteristics [45], to 
predict outcomes and assess the probability of 
complete pathological response (pCR) in Locally 
Advanced Rectal Cancer (LARC) [46,47] and the 
probability of lymph-node distant metastasis [48-
53]. 

 

CNS Cancer 

In the area of Central Nervous System Tumors, 
several studies have reported the possible 
usefulness of using a radiomic approach to 
overcome some clinical difficulties. [54] The field in 
which radiomics has proved promising is the non-
invasive identification of glioblastoma. [55]  The 
Revised World Health Organization (WHO) 
Classification of Tumors of the Central Nervous 
System of 2016 is the first tumor classification based 
on both molecular markers and histology. [56] 
Radiomics aims to allow a rapid and non-invasive 
way of diagnosis and characterization of CNS 
lesions. [57] Radiomics studies have been carried 
out regarding the ability of artificial intelligences in 
ki67 mutational state identification, in 
differentiating the necrotic tissue from relapse after 
radio-chemotherapy and the differentiation 
between primary SNC tumor and brain metastases 
[58-60].
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Radio-Genomics 

Genomics and Proteomics are currently the main 
disciplines that make a clinical contribution to 
precision medicine, allowing a valid patient 
stratification, despite the limitations of biopsy. 
Radiomics is, although very promising, still a field 
under study, and will not be usable in the clinic until 
the Standardization limits are exceeded and an 
acceptable reliability is achieved. The goal of 
radiomics is to relate to genomics, in order to 
identify, through tissue morphology, what is the 
genetic asset of the tumor even before resorting to 
biopsy, with all the advantages that this entails. 
When this result is achieved, it will be possible to 
have accurate estimates of the pathology in 
question without the need to use invasive methods 
[61]. 

 

Screening 

Being able to obtain an analysis algorithm with a 
maximum Sensitivity, even at the expense of 
Specificity, could be extremely useful in screening 
programs, this because safely excluding negative 
tests could reduce the working hours necessary for 
the radiologist to analyze them, allowing, for the 
same number of working hours, the analysis of a 
greater number of overall exams, with the 
possibility of using resources more efficiently by 
extending the screening to a greater number of 
people. [62,63]  

 

Hardware 

Rradiomics analysis tools will probably be available 
as processing software, not differently from those 
currently used in clinical practice. More specifically, 
these software will be provided in compatibility with 
the machines already available in the facilities, and 
will require higher computing power than the 
software currently used in clinical practice due to 
the type of calculations performed, which are more 
complex. However, this type of calculations is 
particularly speeded up using graphics processing 
units (GPU: Graphics Processing Unit) which are 
particularly suitable for performing these 

calculations (Data Mining) due to their architecture, 
allowing the analysis time to be compatible with 
daily use. The current machines (computers) 
available on the market are already able to provide 
the performance necessary for daily use with 
relatively low costs and therefore, it is reasonable to 
say that in the future, with the increase of the 
calculation capacity, the analysis will be faster, 
cheaper and more complex. From costs perspective, 
the machines used for the analysis do not differ 
from the common computers used in every work 
environment and do not require peripherals built ad 
hoc, benefiting from the economy of scale and 
requiring development costs limited mainly to the 
software. As a result of these considerations, it is 
possible to imagine how this analysis tool can easily 
be implemented where required, allowing a wide 
and rapid distribution of this technology on the 
territory when it is mature. 

 

Nuclear Medicine Imaging 

Despite the limitations due to low spatial resolution, 
in the field of nuclear medicine radiomics is 
developing on par with traditional radiology, taking 
advantage of the functional information it can offer. 
[64] In particular, Positron Emission Tomography 
(PET) is the most promising exam and several 
studies suggest that PET Radiomics can provide 
valuable support in the diagnosis, [65] staging [66]  
and characterization of various tumors. [67] In FDG-
PET scans, the Standardized Uptake Value (SUV) is 
the main element routinely used. [68]  SUV is 
calculated from a single voxel within the lesion 
(SUVmax) or from a ROI which represents the 
highest metabolic activity in the tumor (SUVpeak). 
Other quantitative parameters used in PET imaging 
include Total Lesion Glycolysis (TLG) and Metabolic 
Tumor Volume (MTV). [69]   Radiomics has the 
technical potential to detect even the slightest 
changes in repeated scans over time and to 
compare them. This ability would allow us to 
intervene at an early stage of progress or relapse 
[70]. PET is increasingly used quantitatively. This 
requires that intensity values, can be compared 
between repeated measurements, between 
different scanners, and between centers in 
multicenter studies. In this regard, it must be 
considered that radioisotopes have a decay time 
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(half-life), which varies depending on the isotope 
considered. In the case of PET these radioisotopes 
have a very short half-life, for example 18F has a 
half-life of 109.7 minutes. It follows that the 
intensity of the signal generated will depend on the 
time elapsed from radiopharmaceutical preparation 
and the scan, the amount of injected 
radiopharmaceutical, the acquisition time, and the 
radioisotope used. [71] Therefore, during the 
acquisition of the intensity it will be necessary to 
apply a Correction Factor (Decay Factor) that 
considers all these variables to avoid having a false 
numerical data. In nuclear medicine, therefore, the 
use of Artificial Intelligences in the generation of 
valid Attenuation Maps remains an active field of 
study [72] . Application of Artificial Intelligence in 
Denoising is an important point both to help the 
diagnosis by improving the quality of a full dose 
image, and to reduce the Collective Effective Dose, 
i.e. the total amount of radiation artificially 
introduced into the population, due to the increase 
in prescribed diagnostic tests (with obvious 
benefits), cannot be ignored. [73]  

 

Actual Limitations 

At present, most of the studies therefore report 
encouraging results, but the authors suggest further 
verifications to confirm the results obtained from 
the studies paying attention to standardization in 
order to achieve reproducible and reliable results. 
From the perspective of evidence-based medicine, it 
is indeed necessary to achieve accurate and reliable 
results in order to integrate them into clinical 
practice. To date, the limit of radiomics is precisely 
technical standardization, because the methods of 
analysis are numerous and an optimized protocol 
applicable for each type of analysis has not yet been 
set, furthermore the number of studies is, even if 
exponentially growing, still insufficient to provide 
adequate results for introduction into clinical 
practice. The choice of a suitable algorithm for the 
construction of models is an active and important 
research field as it is not yet clear which algorithm is 
more suitable for each type of analysis in terms of 
performance, but it is certainly clear that based on 
the type of task and to the type of dataset, some 
algorithms prove better than others. Most likely it 
will be necessary to involve professionals 

specialized in the study of artificial intelligence to 
achieve the best possible results given the 
complexity achieved by the AI sciences. 

 

Discussion 

We are at the gates of a radical change in medical 
imaging. Understandably, the rapid evolution of 
artificial intelligence technologies can be perceived 
as a threat to the physician, but it can also be seen 
as an opportunity to play a pioneering role in the 
health sector and to actively model this 
transformation process [74]. 

Machines are still very far from the processing 
capability of the human mind, however, their 
superiority in "Task Oriented" tasks is indisputable: 
to date we have countless examples of how 
machines help humans in areas where the latter 
does not excel: precision, repeatability, scalability. In 
this perspective, the machine can be conceived as a 
complement that helps to achieve high qualitative 
and quantitative standards, leaving man more time 
and energy to devote to what only a human mind 
can do. [75] 

Radiomic analysis, once the current limits have been 
overcome, will be a very useful tool to complement 
current diagnostic technologies, due to some 
characteristics that characterize it:  

 

Radiomics is a Non-Operator Dependent Method. 

Radiomic analysis will be performed on PET, SPECT, 
CT and MRI scans, methods now considered highly 
standardized and characterized by a low operator 
dependency factor, being then processed by a 
computer, it will provide accurate and reproducible 
results. Radiomic analysis can therefore also be 
considered a non-operator dependant process. 

Radiomics is a Non-Invasive Method. 

Radiomics analysis is a software processing 
performed on the raw data of scans, and as such, 
can be performed after the scan and more times on 
the same scan, for example, to provide different 
sets of features, without the need to repeat the 
acquisition when the latter respects adequate 
qualitative standards and match the required 
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parameters of the dataset on which the radiomics 
algorithm is trained. 

Radiomics is Repeatable. 

Radiomic analysis will have a high precision 
(precision indicates how close or how repeatable 
the results are) and therefore the Radiomic Delta 
(the difference in two analysis carried out on two 
scans acquired at different times) will be very useful 
in the follow up of patients to evaluate responses to 
therapy and disease progression. 

Radiomics Provides Objective Parameters. 

The result of the radiomic analysis is a set of 
quantitative parameters (Features) that are the 
result of a mathematical processing. Features are 
therefore an excellent support for statistical 
analysis. Statistical correlation will then be able to 
attribute predictive and prognostic factors to the 
individual features or associations of these and will 
probably be able to provide us with histological-
molecular information even before resorting to 
biopsy. 

Radiomics will be easily implemented in clinical 
practice. 

We are still far from the implementation of this 
technology in clinical practice, however, once fully 
developed, given the absence of physical limits 
regarding the equipment, most likely radiomic 
analysis tools will have a very rapid and widespread 
diffusion throughout the territory offering a new 
tool able to reach a better patient care and a more 
efficient workflow in diagnostic centers. 
 

References 

1. Kumar V, Gu Y, Basu S, Berglund A, Eschrich 
SA, Schabath MB, Forster K, et al. . 
Radiomics: the process and the challenges. 
Magn Reson Imaging. 2012 Nov;30(9):1234-
48. doi: 10.1016/j.mri.2012.06.010.  

2. Nougaret S, Tibermacine H, Tardieu M, Sala 
E. Radiomics: an Introductory Guide to What 
It May Foretell. Curr Oncol Rep. 2019 Jun 
25;21(8):70. doi: 10.1007/s11912-019-0815-1. 
PMID: 31240403. 

3. Cuccurullo V, Di Stasio GD, Mansi L. 
Radioguided surgery with radiolabeled 
somatostatin analogs: not only in GEP-NETs. 
Nucl Med Rev Cent East Eur. 2017;20(1):49-
56. 

4. Kitson SL, Cuccurullo V, Ciarmiello A, Mansi 
L. Targeted Therapy Towards Cancer-A 
Perspective. Anticancer Agents Med Chem. 
2017;17(3):311-317. 

5. Cuccurullo V, Di Stasio GD, Schillirò ML, 
Mansi L. Small-Animal Molecular Imaging for 
Preclinical Cancer Research: PET and SPECT. 
Curr Radiopharm. 2016;9(2):102-13. 

6. Mansi L, Cuccurullo V. Diagnostic imaging in 
neuroendocrine tumors. J Nucl Med. 2014 
Oct;55(10):1576-7. 

7. Cuccurullo V, Faggiano A, Scialpi M, Cascini 
GL, Piunno A, Catalano O, et Al.Questions 
and answers: what can be said by diagnostic 
imaging in neuroendocrine tumors? Minerva 
Endocrinol. 2012 Dec;37(4):367-77. 

8. Zwanenburg A, Vallières M, Abdalah MA, 
Aerts HJWL, Andrearczyk V, Apte A, 
Ashrafinia S, Bakas S, Beukinga RJ, Boellaard 
R et Al. The Image Biomarker 
Standardization Initiative: Standardized 
Quantitative Radiomics for High-Throughput 
Image-based Phenotyping. Radiology. 2020 
May;295(2):328-338. doi: 
10.1148/radiol.2020191145. Epub 2020 Mar 10. 
PMID: 32154773; PMCID: PMC7193906. 

9. Cardenas CE, Yang J, Anderson BM, Court 
LE, Brock KB. Advances in Auto-
Segmentation. Semin Radiat Oncol. 2019 
Jul;29(3):185-197. doi: 
10.1016/j.semradonc.2019.02.001. PMID: 
31027636. 

10. Liao S, Gao Y, Oto A, Shen D. Representation 
learning: a unified deep learning framework 
for automatic prostate MR segmentation. 
Med Image Comput Comput Assist Interv. 
2013;16(Pt 2):254-61. doi: 10.1007/978-3-642-
40763-5_32. PMID: 24579148; PMCID: 
PMC3939619.



PhOL     Manni, et al.    199 (pag 191-203) 

 

 
http://pharmacologyonline.silae.it 

ISSN: 1827-8620 

 

11. Litjens G, Kooi T, Bejnordi BE, Setio AAA, 
Ciompi F, Ghafoorian M, van der Laak 
JAWM, van Ginneken B, Sánchez CI. A survey 
on deep learning in medical image analysis. 
Med Image Anal. 2017 Dec;42:60-88. doi: 
10.1016/j.media.2017.07.005. Epub 2017 Jul 
26. PMID: 28778026. 

12. Cuccurullo V, Di Stasio GD, Cascini GL. PET/CT 
in thyroid cancer - the importance of BRAF 
mutations. Nucl Med Rev Cent East Eur. 
2020;23(2):97-102. 

13. Cuccurullo V, Di Stasio GD, Mansi L. 
Physiopathological Premises to Nuclear 
Medicine Imaging of Pancreatic 
Neuroendocrine Tumours. Curr Radiopharm. 
2019;12(2):98-106. 

14. Coroller TP, Grossmann P, Hou Y, Rios 
Velazquez E, Leijenaar RT, Hermann G, 
Lambin P, Haibe-Kains B, Mak RH, Aerts HJ. 
CT-based radiomic signature predicts distant 
metastasis in lung adenocarcinoma. 
Radiother Oncol. 2015 Mar;114(3):345-50. 
doi: 10.1016/j.radonc.2015.02.015. Epub 2015 
Mar 4. PMID: 25746350; PMCID: 
PMC4400248. 

15. Gardin I, Grégoire V, Gibon D, Kirisli H, 
Pasquier D, Thariat J, Vera P. Radiomics: 
Principles and radiotherapy applications. Crit 
Rev Oncol Hematol. 2019 Jun;138:44-50. doi: 
10.1016/j.critrevonc.2019.03.015. Epub 2019 
Mar 29. PMID: 31092384. 

16. Lee G, Lee HY, Park H, Schiebler ML, van 
Beek EJR, Ohno Y, Seo JB, Leung A. 
Radiomics and its emerging role in lung 
cancer research, imaging biomarkers and 
clinical management: State of the art. Eur J 
Radiol. 2017 Jan;86:297-307. doi: 
10.1016/j.ejrad.2016.09.005. Epub 2016 Sep 
10. PMID: 27638103. 

17. Arimura H, Soufi M, Kamezawa H, Ninomiya 
K, Yamada M. Radiomics with artificial 
intelligence for precision medicine in 
radiation therapy. J Radiat Res. 2019 Jan 
1;60(1):150-157. doi: 10.1093/jrr/rry077. PMID: 
30247662; PMCID: PMC6373667. 

18. Gerlinger M, Rowan AJ, Horswell S, Math M, 
Larkin J, Endesfelder D, Gronroos E, 
Martinez P, et al. Intratumor heterogeneity 
and branched evolution revealed by 
multiregion sequencing. N Engl J Med. 2012 
Mar 8;366(10):883-892. doi: 
10.1056/NEJMoa1113205.  

19. Somma F., D’angelo R., Serra N.,Gatta 
G.,Grassi R.,Fiore F.-Use of ethanol in the 
trans-arterial lipiodol embolization (TAELE) 
of intermediated-stage HCC: Is this safer 
than conventional trans-arterial chemo-
embolization (c-TACE)? - PloS ONE (2015) , 
10(6) doi 10.1371/journal.pone.0129573  

20. Somma F., Stoia V., Serra N.,D’Angelo R., 
Gatta G.,Fiore F.- Yttrium-90 trans-arterial 
radioembolization in advanced-stage 
HCC:The impact of portal vein thrombosis on 
survival – PloS ONE (2019), 14(5)  doi 
10.1371/journal.pone.0216935 ]  

21. Gatta G.,Pinto A., Romano S., Ancona 
A.,Scaglione M., Volterrani L. - 
Clinical,mammographic and 
ultrasonographic features of blunt breast 
trauma (2006) European Journal of 
Radiology, 59(3) pp. 327-330 

22. Bade BC, Dela Cruz CS. Lung Cancer 2020: 
Epidemiology, Etiology, and Prevention. Clin 
Chest Med. 2020 Mar;41(1):1-24. doi: 
10.1016/j.ccm.2019.10.001. PMID: 32008623. 

23. Mosmann MP, Borba MA, de Macedo FP, 
Liguori Ade A, Villarim Neto A, de Lima KC. 
Solitary pulmonary nodule and (18)F-FDG 
PET/CT. Part 1: epidemiology, morphological 
evaluation and cancer probability. Radiol 
Bras. 2016 Jan-Feb;49(1):35-42. doi: 
10.1590/0100-3984.2014.0012. PMID: 
26929459; PMCID: PMC4770395. 

24. Briganti V, Cuccurullo V, Berti V, Di Stasio GD, 
Linguanti F, Mungai F, Mansi L. 99mTc-
EDDA/HYNIC-TOC is a New Opportunity in 
Neuroendocrine Tumors of the Lung (and in 
other Malignant and Benign Pulmonary 
Diseases). Curr Radiopharm. 2020;13(3):166-
176.



PhOL     Manni, et al.    200 (pag 191-203) 

 

 
http://pharmacologyonline.silae.it 

ISSN: 1827-8620 

 

25. Ather S, Kadir T, Gleeson F. Artificial 
intelligence and radiomics in pulmonary 
nodule management: current status and 
future applications. Clin Radiol. 2020 
Jan;75(1):13-19. doi: 
10.1016/j.crad.2019.04.017. Epub 2019 Jun 12. 
PMID: 31202567. 

26. Zhang J, Zhao X, Zhao Y, Zhang J, Zhang Z, 
Wang J, Wang Y, Dai M, Han J. Value of pre-
therapy 18F-FDG PET/CT radiomics in 
predicting EGFR mutation status in patients 
with non-small cell lung cancer. Eur J Nucl 
Med Mol Imaging. 2020 May;47(5):1137-1146. 
doi: 10.1007/s00259-019-04592-1. Epub 2019 
Nov 14. PMID: 31728587. 

27. Li S, Ding C, Zhang H, Song J, Wu L. 
Radiomics for the prediction of EGFR 
mutation subtypes in non-small cell lung 
cancer. Med Phys. 2019 Oct;46(10):4545-
4552. doi: 10.1002/mp.13747. Epub 2019 Aug 
20. PMID: 31376283. 

28. Kolak A, Kamińska M, Sygit K, Budny A, 
Surdyka D, Kukiełka-Budny B, Burdan F. 
Primary and secondary prevention of breast 
cancer. Ann Agric Environ Med. 2017 Dec 
23;24(4):549-553. doi: 10.26444/aaem/75943. 
Epub 2017 Jul 18. PMID: 29284222. 

29. Crivelli P, Ledda RE, Parascandolo N, Fara A, 
Soro D, Conti M. A New Challenge for 
Radiologists: Radiomics in Breast Cancer. 
Biomed Res Int. 2018 Oct 8;2018:6120703. 
doi: 10.1155/2018/6120703. PMID: 30402486; 
PMCID: PMC6196984. 

30. Sollini M, Cozzi L, Ninatti G, Antunovic L, 
Cavinato L, Chiti A, Kirienko M. PET/CT 
radiomics in breast cancer: Mind the step. 
Methods. 2020 Jan 21:S1046-2023(19)30263-
4. doi: 10.1016/j.ymeth.2020.01.007. Epub 
ahead of print. PMID: 31978538. 

31. Reig B, Heacock L, Geras KJ, Moy L. Machine 
learning in breast MRI. J Magn Reson 
Imaging. 2020 Oct;52(4):998-1018. doi: 
10.1002/jmri.26852. Epub 2019 Jul 5. PMID: 
31276247; PMCID: PMC7085409. 

32. Liang C, Cheng Z, Huang Y, He L, Chen X, Ma 
Z, Huang X, Liang C, Liu Z. An MRI-based 
Radiomics Classifier for Preoperative 
Prediction of Ki-67 Status in Breast Cancer. 
Acad Radiol. 2018 Sep;25(9):1111-1117. doi: 
10.1016/j.acra.2018.01.006. Epub 2018 Feb 7. 
PMID: 29428211. 

33. Lemarignier C, Martineau A, Teixeira L, 
Vercellino L, Espié M, Merlet P, Groheux D. 
Correlation between tumour characteristics, 
SUV measurements, metabolic tumour 
volume, TLG and textural features assessed 
with 18F-FDG PET in a large cohort of 
oestrogen receptor-positive breast cancer 
patients. Eur J Nucl Med Mol Imaging. 2017 
Jul;44(7):1145-1154. doi: 10.1007/s00259-017-
3641-4. Epub 2017 Feb 10. PMID: 28188325. 

34. Moscoso A, Ruibal Á, Domínguez-Prado I, 
Fernández-Ferreiro A, Herranz M, Albaina L, 
Argibay S, Silva-Rodríguez J, Pardo-Montero 
J, Aguiar P. Texture analysis of high-
resolution dedicated breast 18 F-FDG PET 
images correlates with 
immunohistochemical factors and subtype 
of breast cancer. Eur J Nucl Med Mol 
Imaging. 2018 Feb;45(2):196-206. doi: 
10.1007/s00259-017-3830-1. Epub 2017 Sep 21. 
PMID: 28936601. 

35. Molina-García D, García-Vicente AM, Pérez-
Beteta J, Amo-Salas M, Martínez-González A, 
Tello-Galán MJ, Soriano-Castrejón Á, Pérez-
García VM. Intratumoral heterogeneity in 
18F-FDG PET/CT by textural analysis in breast 
cancer as a predictive and prognostic 
subrogate. Ann Nucl Med. 2018 
Jul;32(6):379-388. doi: 10.1007/s12149-018-
1253-0. Epub 2018 Jun 5. PMID: 29869770. 

36. Acar E, Turgut B, Yiğit S, Kaya G. Comparison 
of the volumetric and radiomics findings of 
18F-FDG PET/CT images with 
immunohistochemical prognostic factors in 
local/locally advanced breast cancer. Nucl 
Med Commun. 2019 Jul;40(7):764-772.. 

37. Antunovic L, Gallivanone F, Sollini M, Sagona 
A, Invento A, Manfrinato G, Kirienko M, 
Tinterri C, Chiti A, Castiglioni I. [18F]FDG 
PET/CT features for the molecular 



PhOL     Manni, et al.    201 (pag 191-203) 

 

 
http://pharmacologyonline.silae.it 

ISSN: 1827-8620 

characterization of primary breast tumors. 
Eur J Nucl Med Mol Imaging. 2017 
Nov;44(12):1945-1954.  

38. Huang SY, Franc BL, Harnish RJ, Liu G, Mitra 
D, Copeland TP, Arasu VA, Kornak J, Jones 
EF, Behr SC, Hylton NM, Price ER, Esserman 
L, Seo Y. Exploration of PET and MRI 
radiomic features for decoding breast 
cancer phenotypes and prognosis. NPJ 
Breast Cancer. 2018 Aug 16;4:24. doi: 
10.1038/s41523-018-0078-2. PMID: 30131973; 
PMCID: PMC6095872. 

39. Drukker K, Li H, Antropova N, Edwards A, 
Papaioannou J, Giger ML. Most-enhancing 
tumor volume by MRI radiomics predicts 
recurrence-free survival "early on" in 
neoadjuvant treatment of breast cancer. 
Cancer Imaging. 2018 Apr 13;18(1):12. doi: 
10.1186/s40644-018-0145-9. PMID: 29653585; 
PMCID: PMC5899353.3 

40. Di Grezia G., Somma F., Serra N., Reginelli 
A.,Cappabianca S., Grassi R.,Gatta G. - 
Reducing costs of breast examination: 
Ultrasound Performance and inter-Observer 
variability of expert radiologists versus 
residents (2016) Cancer Investigation, 34(7) 
pp. 355-360. 

41. Gatta G.,Di Grezia G.,Ancona A.,Capodieci 
M.,Coppolino F., Rossi C.,Feragalli 
B.,Iacomino A.,Cappabianca S.,Grassi R. – 
Underestimation of atypical lobular 
hyperplasia and lobular carcinoma in situ at 
stereotaxic 11-gauge vacuum-assisted breast 
biopsy (2013) European Journal of 
Inflammation, 11(3) pp.825-835  

42. Ancona A.,Capodieci M., Galiano A.,Mangieri 
F., Lorusso V., Gatta G. – Vacuum-assisted 
biopsy diagnosis of atypical ductal 
hyperplasia and patient management (2011) 
Radiologia Medica, 116(2) pp.276-291 doi 
10.1007/s11547-011-0626-9 ] 

43. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, 
Wallace MB. Colorectal cancer. Lancet. 2019 
Oct 19;394(10207):1467-1480. doi: 
10.1016/S0140-6736(19)32319-0. PMID: 
31631858. 

44. Chen J, Chen Y, Zheng D, Pang P, Lu J, Zheng 
X. Pretreatment MR-Based Radiomics 
Signature as Potential Imaging Biomarker 
for Assessing the Expression of 
Topoisomerase II alpha (TOPO-IIα) in Rectal 
Cancer. J Magn Reson Imaging. 2020 
Jun;51(6):1881-1889. doi: 10.1002/jmri.26972. 
Epub 2019 Nov 1. PMID: 31675149. 

45. Liu Z, Zhang XY, Shi YJ, Wang L, Zhu HT, 
Tang Z, Wang S, Li XT, Tian J, Sun YS. 
Radiomics Analysis for Evaluation of 
Pathological Complete Response to 
Neoadjuvant Chemoradiotherapy in Locally 
Advanced Rectal Cancer. Clin Cancer Res. 
2017 Dec 1;23(23):7253-7262. doi: 
10.1158/1078-0432.CCR-17-1038. Epub 2017 
Sep 22. PMID: 28939744. 

46. Lovinfosse P, Polus M, Van Daele D, 
Martinive P, Daenen F, Hatt M, Visvikis D, 
Koopmansch B, Lambert F, Coimbra C, 
Seidel L, Albert A, Delvenne P, Hustinx R. 
FDG PET/CT radiomics for predicting the 
outcome of locally advanced rectal cancer. 
Eur J Nucl Med Mol Imaging. 2018 
Mar;45(3):365-375. doi: 10.1007/s00259-017-
3855-5. Epub 2017 Oct 18. PMID: 29046927. 

47. Horvat N, Bates DDB, Petkovska I. Novel 
imaging techniques of rectal cancer: what 
do radiomics and radiogenomics have to 
offer? A literature review. Abdom Radiol 
(NY). 2019 Nov;44(11):3764-3774. doi: 
10.1007/s00261-019-02042-y. PMID: 31055615; 
PMCID: PMC6824982. 

48. Li M, Zhu YZ, Zhang YC, Yue YF, Yu HP, Song 
B. Radiomics of rectal cancer for predicting 
distant metastasis and overall survival. 
World J Gastroenterol. 2020 Sep 
7;26(33):5008-5021. doi: 
10.3748/wjg.v26.i33.5008. PMID: 32952346; 
PMCID: PMC7476170 

49. Reginelli A.,Di Grezia G., Gatta G., Iacobellis 
F.,Rossi C.,Giganti M.,Coppolino F.,Brunese 
L. – Role of conventional radiology and MRI 
defecography of pelvic floor hernias (2013) 
BMC Surgery, 13 (Suppl.2), art. n. S53 doi



PhOL     Manni, et al.    202 (pag 191-203) 

 

 
http://pharmacologyonline.silae.it 

ISSN: 1827-8620 

 

50. Di Grezia G.,Gatta G.,Rella R.,Donatello 
D.,Falco G.,Grassi R., Grassi R. – Abdominal 
hernias, giant colon diverticulum, GIST, 
intestinal pneumatosis, colon ischemia, cold 
intussusception, gallstone ileus and foreign 
bodies: Our experience and literature review 
of incidental gastrointestinal MDCT findings 
(2017) BioMed Research International art.n. 
5716835  

51. Di Grezia G., Gatta G.,Rella R., Iacobellis F., 
Berritto D., Musto L.A., Grassi R. – MDCT in 
acute ischaemic left colitis: a pictorial essay 
(2019) Radiologia Medica, 124(2) pp. 103-108 
doi 10.1007/s11547-018-0947-7  

52. Falco G.,mele S.,Zizzo M.,Di Grezia 
G.,Cecinato P.,Besutti G., Coiro S.,Gatta 
G.,Vacondio R.,Ferrari G. – Colonic 
metastasis from breast carcinoma detection 
by CESM and PET/CT: A case report (2018) 
Medicine (US), 97(21) art. n. e0888  

53. Romano S.,Scaglione M.,Gatta G., Lombardo 
P.,Stavolo C.,Romano L., Grassi R. – 
Association of splenic and renal infarctions 
in acute abdominal emergencies (2004) 
European Journal of Radiology, 50(1), pp. 
48-58 doi 10.1016/j.ejrad.2003.11.014  

54. Cuccurullo V, Di Stasio GD, Cascini GL, Gatta 
G, Bianco C. The Molecular Effects of 
Ionizing Radiations on Brain Cells: Radiation 
Necrosis vs. Tumor Recurrence.Diagnostics 
(Basel). 2019 Sep 24;9(4):127. 

55. Cascini GL, Cuccurullo V, Mansi L. 18FNa-
fluoride has a higher extraction with respect 
to 99mTc-methylene diphosphonate: 
mismatch in a case of meningioma. Rev Esp 
Med Nucl Imagen Mol. 2014 Jan-Feb;33(1):52-
3. 

56. Ciarmiello A, Giovannini E, Meniconi M, 
Cuccurullo V, Gaeta MC. Hybrid SPECT/CT 
imaging in neurology. Curr Radiopharm. 
2014;7(1):5-11. 

57. Lupi A, Bertagnoni G, Borghero A, Picelli A, 
Cuccurullo V, Zanco P. 18FDG-PET/CT in 
traumatic brain injury patients: the relative 

hypermetabolism of vermis cerebelli as a 
medium and long term predictor of 
outcome. Curr Radiopharm. 2014;7(1):57-62. 

58. Cistaro A, Cuccurullo V, Quartuccio N, Pagani 
M, Valentini MC, Mansi L. Role of PET and 
SPECT in the study of amyotrophic lateral 
sclerosis. Biomed Res Int. 2014;2014:237437. 
doi: 10.1155/2014/237437. 

59. Chen C, Ou X, Wang J, Guo W, Ma X. 
Radiomics-Based Machine Learning in 
Differentiation Between Glioblastoma and 
Metastatic Brain Tumors. Front Oncol. 2019 
Aug 22;9:806. doi: 10.3389/fonc.2019.00806. 
PMID: 31508366; PMCID: PMC6714109. 

60. Su C, Jiang J, Zhang S, Shi J, Xu K, Shen N, 
Zhang J, Li L, Zhao L, Zhang J, Qin Y, Liu Y, 
Zhu W. Radiomics based on multicontrast 
MRI can precisely differentiate among 
glioma subtypes and predict tumour-
proliferative behaviour. Eur Radiol. 2019 
Apr;29(4):1986-1996. doi: 10.1007/s00330-
018-5704-8. Epub 2018 Oct 12. PMID: 
30315419. 

61. Bodalal Z, Trebeschi S, Nguyen-Kim TDL, 
Schats W, Beets-Tan R. Radiogenomics: 
bridging imaging and genomics. Abdom 
Radiol (NY). 2019 Jun;44(6):1960-1984. doi: 
10.1007/s00261-019-02028-w. PMID: 
31049614. 

62. Di Grezia G.,Romano T., De Francesco 
F.,Somma F., Rea G., Grassi R., Gatta G. - 
Breast ultrasound in the management of 
gynecomastia in Peutz-Jeghers syndrome in 
monozygotic twins: Two case reports (2014) 
Journal of Medical Case Reports, 8(1)  art. 
n.440 doi 10.1186/1752-1947-8-440  

63. Ferraro G.A., Romano T., De Francesco F., 
Grandone A., D’Andrea F., Giudice E.M.D., 
Cataldo C., Gatta G.,Di Grezia G., Perrone 
L.,Nicoletti G. - Management of prepubertal 
gynecomastia in two monozygotic twins 
with Peutz-Jeghers syndrome: From 
aromatase inhibitors to subcutaneous 
mastectomy (2013) Aesthetic Plastic 
Surgery, 37(5) pp 1012-1022 doi 
10.1007/s00266-013-0188-z 



PhOL     Manni, et al.    203 (pag 191-203) 

 

 
http://pharmacologyonline.silae.it 

ISSN: 1827-8620 

 

64. Zwanenburg A. Radiomics in nuclear 
medicine: robustness, reproducibility, 
standardization, and how to avoid data 
analysis traps and replication crisis. Eur J 
Nucl Med Mol Imaging. 2019 
Dec;46(13):2638-2655. doi: 10.1007/s00259-
019-04391-8. Epub 2019 Jun 25. PMID: 
31240330. 

65. Briganti V, Cuccurullo V, Di Stasio GD, Mansi 
L. Gamma Emitters in Pancreatic Endocrine 
Tumors Imaging in the PET Era: Is there a 
Clinical Space for 99mTc-peptides? Curr 
Radiopharm. 2019;12(2):156-170. 

66. Cuccurullo V, di Stasio GD, Evangelista L, 
Ciarmiello A, Mansi L. Will 68Ga PSMA-
radioligands be the only choice for nuclear 
medicine in prostate cancer in the near 
future? A clinical update. Rev Esp Med Nucl 
Imagen Mol. 2018 Mar-Apr;37(2):103-109. 

67. Cuccurullo V, Di Stasio GD, Mazzarella G, 
Cascini GL. Microvascular Invasion in HCC: 
The Molecular Imaging Perspective. 
Contrast Media Mol Imaging. 2018 Oct 
4;2018:9487938. doi: 10.1155/2018/9487938. 
PMID: 30402046. 

68. Cuccurullo V, Di Stasio GD, Prisco MR, Mansi 
L. Is there a clinical usefulness for 
radiolabeled somatostatin analogues 
beyond the consolidated role in NETs? Indian 
J Radiol Imaging. 2017 Oct-Dec;27(4):509-
516. 

69. Cuccurullo V, Prisco MR, Di Stasio GD, Mansi 
L. Nuclear Medicine in Patients with NET: 
Radiolabeled Somatostatin Analogues and 
their Brothers. Curr Radiopharm. 
2017;10(2):74-84. 

70. Shi L, Onofrey JA, Liu H, Liu YH, Liu C. Deep 
learning-based attenuation map generation 
for myocardial perfusion SPECT. Eur J Nucl 
Med Mol Imaging. 2020 Sep;47(10):2383-
2395. doi: 10.1007/s00259-020-04746-6. Epub 
2020 Mar 26. PMID: 32219492. 

71. Hwang D, Kang SK, Kim KY, Seo S, Paeng JC, 
Lee DS, Lee JS. Generation of PET 
Attenuation Map for Whole-Body Time-of-
Flight 18F-FDG PET/MRI Using a Deep Neural 
Network Trained with Simultaneously 
Reconstructed Activity and Attenuation 
Maps. J Nucl Med. 2019 Aug;60(8):1183-1189. 
doi: 10.2967/jnumed.118.219493. Epub 2019 
Jan 25. PMID: 30683763; PMCID: 
PMC6681691. 

72. Visvikis D, Cheze Le Rest C, Jaouen V, Hatt 
M. Artificial intelligence, machine (deep) 
learning and radio(geno)mics: definitions 
and nuclear medicine imaging applications. 
Eur J Nucl Med Mol Imaging. 2019 
Dec;46(13):2630-2637. doi: 10.1007/s00259-
019-04373-w. Epub 2019 Jul 6. PMID: 
31280350. 

73. Nensa F, Demircioglu A, Rischpler C. Artificial 
Intelligence in Nuclear Medicine. J Nucl Med. 
2019 Sep;60(Suppl 2):29S-37S. doi: 
10.2967/jnumed.118.220590. PMID: 31481587. 

74. Aktolun C. Artificial intelligence and 
radiomics in nuclear medicine: potentials 
and challenges. Eur J Nucl Med Mol Imaging. 
2019 Dec;46(13):2731-2736. doi: 
10.1007/s00259-019-04593-0. Erratum in: Eur 
J Nucl Med Mol Imaging. 2020 Feb;47(2):513. 
PMID: 31673788. 

75. Mansi L, Cuccurullo V, Ciarmiello A. From 
Homo sapiens to Homo in nexu (connected 
man): could functional imaging redefine the 
brain of a "new human species"? Eur J Nucl 
Med Mol Imaging. 2014 Jul;41(7):1385-7. 

 

 

 

 

 

 

 

 

 


